802.11 n описание стандарта. AC стандарт Wi-Fi

Наиболее быстро развивающимся сегментом телекоммуникаций сегодня является Беспроводная Локальная Сеть (WiFi). В последние годы виден все больший рост спроса на мобильные устройства, построенные на основе беспроводных технологий.

Стоит отметить, что WiFi продукты передают и получают информацию с помощью радиоволн. Несколько одновременных вещаний могут происходить без обоюдного вмешательства благодаря тому, что радиоволны передаются по разным радиочастотам, известным также как каналы. Для осуществления передачи информации WiFi устройства должны «наложить» данные на радиоволну, также известную как несущая волна. Этот процесс называется модуляцией. Существуют различные типы модуляции, которые мы рассмотрим далее. Каждый тип модуляции имеет свои преимущества и недостатки с точки зрения эффективности и требований к питанию. Вместе, рабочий диапазон и тип модуляции, определяют физический уровень данных (PHY) для стандартов передачи данных. Продукты совместимы по PHY в том случае, когда они используют один диапазон и один тип модуляции.

Первый стандарт беспроводных сетей 802.11 был одобрен Институтом инженеров по электротехнике и радиоэлектронике (IEEE) в 1997 году и поддерживал скорость передачи данных до 2-х Мбит\с. Используемые технологические схемы модуляции стандарта: псевдослучайная перестройка рабочей частоты (FHSS - Frequency Hopping Spread Spectrum) и широкополосная модуляция с прямым расширением спектра (DSSS - Direct Sequence Spread Spectrum).

Далее, в 1999 году, IEEE одобрила еще два стандарта беспроводных сетей WiFi: 802.11a и 802.11b. Стандарт 802.11a работает в частотном диапазоне 5ГГц со скоростью передачи данных до 54Мбит\с. Данный стандарт построен на основе технологии цифровой модуляции ортогонального мультплексирования с разделением частот (OFDM - Orthogonal Frequency Division Multiplexing). Стандарт 802.11b использует диапазон частот 2.4 ГГц и достигает скоростей передачи данных до 11Мбит\с. В отличие от стандарта 802.11a, схема стандарта 802.11b построена по принципу DSSS.

Поскольку реализовать схему DSSS легче, нежели чем OFDM, то и продукты, использующие стандарт 802.11b, начали появляться на рынке раньше (с 1999 года). С тех пор продукты, работающие по беспроводному протоколу радиодоступа и использующие стандарт 802.11b, широко использовались в корпорациях, офисах, дома, в загородных коттеджах, в общественных местах (хот-споты) и т.д. На всех продуктах, прошедших сертификацию альянса совместимости беспроводного оборудования Ethernet (WECA - Wireless Ethernet Compatibility Alliance), имеется соответствующая отметка с официально зарегистрированным логотипом WiFi. Альянс WECA (или Wi-Fi Alliance) включает в себя всех основных производителей беспроводных устройств на основе технологии WiFi. Альянс занимается тем, что сертифицирует, маркирует, а также тестирует на совместимость оборудование, применяющее технологии WiFi.

В начале 2001 года Федеральная Комиссия по Коммуникациям Соединенных Штатов (FCC - Federal Communications Commission) ратифицировала новые правила, благодаря которым разрешается дополнительная модуляция в диапазоне 2.4 ГГц. Это позволило IEEE расширить стандарт 802.11b, что привело к поддержке более высоких скоростей для передачи данных. Таким образом, появился стандарт 802.11g, который работает со скоростью передачи данных до 54Мбит\с и разрабатывался с использованием технологии ODFM.

Частоты Wi-Fi

Обеспечить беспроводную связь с Интернет теперь доступно всем. Достаточно подключить у себя в доме, на даче или в офисе систему wifi и можно принимать сигнал не заботясь о бесконечных проводах, телефонных подключениях, модемах и картах связи. Роутер wifi является маршрутизатором, принимающим решение по пересылке пакетных данных для различных модульных сегментов сети. Проще говоря, если у вас в доме находятся один или несколько ноутбуков и все они нуждаются в подключении к сети Интернет, то эту проблему решает маршрутизатор беспроводной связи. Система wifi самостоятельно находит ваши ноутбуки и устанавливает соединение с Интернет. Стандартная схема беспроводного маршрутизатора предусматривает не менее одного соединения. Раздача интернета происходит на различных частотах. Для Российской Федерации предусмотрены и выделены частоты в диапазоне от 5150-5350 МГц до 5650-6425 МГц. Данные частоты являются основными, для работы в указанных диапазонах не требуется специального разрешения. Фиксированный беспроводной доступ 5150-5350 МГц и 5650-6425 МГц обеспечивает высокую скорость передаваемых данных в сети Интернет. Для поиска свободного канала связи необходимо скоординировать подключение сети с администрациями других сетей. Каждая сеть должна использовать канал-частоту, отделенную от другого канала полосой 25 МГц.

Стандарт 802.11a – Высокая производительность и быстродействие.

Благодаря использованию частоты 5 ГГц и модуляции OFDM у этого стандарта есть два ключевых преимущества перед стандартом 802.11b. Во-первых, это значительно увеличенная скорость передачи данных по каналам связи. Во-вторых, увеличилось число не накладывающихся каналов. Диапазон 5 ГГц (также известный как UNII) фактически состоит из трех субдиапозонов: UNII1 (5.15 – 5.25 ГГц), UNII2 (5.25 – 5.35 ГГц) и UNII3 (5.725 – 5.825 ГГц). При использовании одновременно двух субдиапозонов UNII1 и UNII2 получаем до восьми непересекающихся каналов против всего лишь трех в диапазоне 2.4 ГГц. Также у этого стандарта гораздо больше доступная полоса пропускания. Таким образом, с использованием стандарта 802.11а можно поддерживать большее число одновременных, более продуктивных, неконфликтных беспроводных соединений.

Стоит отметить, что т.к. стандарты 802.11а и 802.11b работают в различных диапазонах, то и продукты, разработанные под эти стандарты не совместимы. Например, точка доступа WiFi, работающая в диапазоне 2.4 ГГц, стандарта 802.11b, не будет работать с беспроводной сетевой картой, рабочий диапазон которой 5 ГГц. Однако, оба стандарта могут и сосуществовать. К примеру, пользователи, подключенные к точкам доступа, применяющим разные стандарты, также могут использовать любые внутренние ресурсы этой сети, но при условии, что эти точки доступа подключены к одной опорной сети.

Еще важно знать, что в Европе и России диапазон 5 ГГц применяется исключительно в военных целях, соответственно в любых иных целях он запрещен к использованию.

802.11g – Высокая скорость в диапазоне 2.4 ГГц.

Стандарт 802.11g несет с собой более высокие скорости передачи данных, при этом поддерживая совместимость с продуктами стандарта 802.11b. Стандарт работает с применением модуляции DSSS на скоростях до 11Мбит\с, но при этом дополнительно используется модуляция OFDM на скоростях выше 11Мбит\с. Таким образом, оборудование стандартов 802.11b и 802.11g совместимо на скоростях, не превышающих 11Мбит\с. Если в диапазоне 2.4 ГГц необходима скорость выше, нежели 11Мбит\с, то нужно использовать оборудование стандарта 802.11g.

Можно сказать, что стандарт 802.11g соединил в себе все лучшее от стандартов 802.11b и 802.11a.

Базовый стандарт IEEE 802.11 разработан в 1997 году для организации беспроводной связи по радиоканалу на скорость до 1 МБит/с. в частотном диапазоне 2,4 ГГц. Опционально, то есть при наличии с обоих сторон специального оборудования, скорость можно было поднять до 2 Мбит/с.
Следом за ним, в 1999 году, была выпущена спецификация 802.11a для диапазона 5ГГц со максимально достижимой скоростью 54 Мбит/с.
После этого стандарты WiFi разделились по двум используемым диапазонам:

Диапазон 2,4 GHz:

Используемая полоса радиочастот 2400-2483,5 МГц. разделена на 14 каналов:

Канал Частота
1 2.412 ГГц
2 2.417 ГГц
3 2.422 ГГц
4 2.427 ГГц
5 2.432 ГГц
6 2.437 ГГц
7 2.442 ГГц
8 2.447 ГГц
9 2.452 ГГц
10 2.457 ГГц
11 2.462 ГГц
12 2.467 ГГц
13 2.472 ГГц
14 2.484 ГГц

802.11b - первая модифицикация базового стандарта Вай-Фай со скоростями 5,5 Мбит/с. и 11 МБит/с. Для его работы используются модуляции DBPSK и DQPSK, технология DSSS, кодирование Barker 11 и CCK.
802.11g - дальнейшая ступень развития предыдущей специфиции с максимальной скоростью передачи данных до 54 Мбит/с (реальная при этом 22-25 МБит/с). Имеет обратную совместимость с 802.11b и более широкую зону покрытия. Используются: технологии DSSS и ODFM, модулятиции DBPSK и DQPSK, кодирование arker 11 и CCK.
802.11n - на текущий момент самый современный и быстрый стандарт WiFi, имеющий максимальную зону покрытия в диапазоне 2,4 GHz, а так же используется и в спектре 5GHz. Обратно совместим с 802.11a/b/g. Поддерживает ширину канала 20 и 40 MHz. Используемые технологии ODFM и ODFM MIMO (многоканальный вход-выход Multiple Input Multiple Output). Максимальная скорость передачи данных - 600 Мбит/с (при этом реальная эффективность составляет в среднем не больше 50% от заявленного).

Диапазон 5 GHz:

Используемая полоса радиочастот 4800-5905 МГц. разделена на 38 каналов.

802.11a - первая модификация базовой спецификации IEEE 802.11 для радиочастотного диапазона 5GHz. Поддерживаемая скорость - до 54 Мбит\с. Используемая технология - OFDM, модуляции BPSK, QPSK, 16-QAM. 64-QAM. Используемое кодирование - Convoltion Coding.

802.11n - Универсальный стандарт WiFi, поддерживающий оба частотных диапазона. Может использовать ширину канала как 20, так и 40 MHz. Максимально достижимый скоростной предел - 600 МБит/с.

802.11ac - эта спецификация сейчас активно используется на двухдиапазонных WiFi роутерах. По сравнению с предшественником имеет лучшую зону покрытия и значительно экономнее в плане электропитания. Скорость передачи данных - до 6,77 Гбит/с при условии, что роутер имеет 8 антенн.
802.11ad - самый современный на сегодня стандарт Вай-Фай, имеющий дополнительный диапазон 60 ГГц .. Имеет второе название - WiGig (Wireless Gigabit). Теоретически достижимая скорость передачи данных - до 7 Гбит/с.

Протокол беспроводной связи Wi-Fi (Wireless Fidelity – беспроводная точность) был разработан еще в 1996 году. Изначально он предназначался для построения локальных сетей, но наибольшую популярность приобрел, как эффективный метод соединения с интернетом смартфонов и других портативных устройств.

За 20 лет одноименный альянс разработал несколько поколений соединения, внедряя с каждым годом более скоростные и функциональные его обновления. Они описываются стандартами 802.11, издаваемыми IEEE (Институт инженеров электротехники и электроники). В группу входит несколько версий протокола, отличающихся скоростью передачи данных и поддержкой дополнительных функций.

Самый первый стандарт Wi-Fi не имел буквенного обозначения. Поддерживающие его устройства обмениваются данными на частоте 2,4 ГГц. Скорость передачи информации составляла всего 1 Мбит/с. Также существовали девайсы с поддержкой скорости до 2 Мбит/с. Он активно использовался всего 3 года, после чего был усовершенствован. Каждый последующий стандарт Wi-Fi обозначается буквой после общего номера (802.11a/b/g/n и т.д.).

Одно из первых обновлений стандарта Wi-Fi, вышедшее в 1999 году. Благодаря удвоению частоты (до 5 ГГц) инженерам удалось добиться теоретических скоростей до 54 Мбит/с. Широкого распространения он не получил, так как сам по себе несовместим с другими версиями. Устройства, поддерживающие его, для работы в сетях на 2,4 ГГц должны иметь двойной приемопередатчик. Смартфоны с Wi-Fi 802.11a распространены слабо.

Стандарт Wi-Fi IEEE 802.11b

Второе раннее обновление интерфейса, вышедшее параллельно с версией a. Частота осталась прежней (2,4 ГГц), но скорость увеличили до 5,5 или 11 Мбит/с (в зависимости от устройства). До конца первого десятилетия 2000-х годов это был наиболее распространенный стандарт для беспроводных сетей. Совместимость с более старой версией, а также достаточно большой радиус покрытия, обеспечили ему популярность. Несмотря на вытеснение новыми версиями, 802.11b поддерживается практически всеми современными смартфонами.

Стандарт Wi-Fi IEEE 802.11g

Новое поколение протокола Wi-Fi было представлено в 2003 году. Разработчики оставили частоты передачи данных прежними, благодаря чему стандарт оказался полностью совместимым с предшествующим (старые устройства работали со скоростью до 11 Мбит/с). Скорость передачи информации возросла до 54 Мбит/с, что было достаточно вплоть до недавнего времени. Все современные смартфоны работают с 802.11g.

Стандарт Wi-Fi IEEE 802.11n

В 2009 году вышло масштабное обновление стандарта Wi-Fi. Новая версия интерфейса получила существенное увеличение скорости (до 600 Мбит/с), сохранив совместимость с предшествующими. Для возможности работы с оборудованием 802.11a, а также борьбы с перегруженностью диапазона 2,4 ГГц, была возвращена поддержка частот 5 ГГц (параллельно 2,4 ГГц).

Были расширены возможности конфигурирования сети и увеличено количество поддерживаемых одновременно соединений. Появились возможность связи в многопоточном режиме MIMO (параллельная передача нескольких потоков данных на одной частоте) и объединение двух каналов для связи с одним устройством. Первые смартфоны с поддержкой этого протокола вышли в 2010 году.

Стандарт Wi-Fi IEEE 802.11ac

В 2014 году был утвержден новый стандарт Wi-Fi IEEE 802.11ac. Он стал логичным продолжением 802.11n, предоставляющим десятикратный рост скорости. Благодаря возможности объединения до 8 каналов (по 20 МГц каждый) одновременно – теоретический потолок увеличился до 6,93 Гбит/с. что в 24 раза быстрее, чем 802.11n.

От частоты 2,4 ГГц было решено отказаться, в силу загруженности диапазона и невозможности объединения более 2 каналов. Стандарт Wi-Fi IEEE 802.11ac работает в диапазоне 5 ГГц и обратно совместим с устройствами 802.11n (с частотой 2,4 ГГц), но работа с более ранними версиями не гарантируется. Сегодня еще не все смартфоны поддерживают его (к примеру, поддержки нет у многих бюджетников на MediaTek).

Другие стандарты

Существуют версии IEEE 802.11, маркированные другими буквами. Но они или вносят небольшие поправки и дополнения к перечисленным выше стандартам, или добавляют специфические функции (вроде возможности взаимодействия с другими радиосетями или безопасность). Выделить стоит 802.11y, использующий нестандартную частоту 3,6 ГГц, а также 802.11ad, рассчитанный на диапазон 60 ГГц. Первый создан для обеспечения дальности связи до 5 км, за счет использования чистого диапазона. Второй (он также известен как WiGig) – предназначен для обеспечения максимальной (до 7 Гбит/с) скорости связи на сверхмалых расстояниях (в пределах комнаты).

Какой стандарт Wi-Fi для смартфона лучше

Все современные смартфоны оборудованы модулем Wi-Fi, рассчитанным на работу с несколькими версиями 802.11. Как правило, поддерживаются все взаимно совместимые стандарты: b, g и n. Однако работа с последним нередко может быть реализована только на частоте 2,4 ГГц. Устройства, которые способны работать в сетях 802.11n 5 ГГц, также отличаются поддержкой 802.11a, как обратно совместимого.

Рост частоты способствует увеличению скорости обмена данными. Но, вместе с тем, уменьшается длина волны, ей сложнее проходить сквозь препятствия. Из-за этого теоретическая дальность связи 2,4 ГГц будет выше, чем у 5 ГГц. Однако на практике ситуация обстоит немного иначе.

Частота 2,4 ГГц оказалась свободной, поэтому бытовая электроника использует именно ее. Помимо Wi-Fi, в этом диапазоне работают Bluetooth-устройства, приемопередатчики беспроводных клавиатур и мышек, в нем же излучают магнетроны СВЧ-печей. Поэтому в местах, где функционирует несколько сетей Wi-Fi, количество помех нивелирует преимущество в дальности. Сигнал будет ловиться и за сотню метров, но скорость окажется минимальной, а потери пакетов данных – большими.

Диапазон 5 ГГц более широк (от 5170 до 5905 МГц), меньше загружен. Поэтому волны хуже преодолевают препятствия (стена, мебель, тело человека), зато в условиях прямой видимости обеспечивают более устойчивую связь. Неспособность эффективно преодолевать стены оборачивается преимуществом: вы не сможете поймать соседский Wi-Fi, зато и вашему роутеру или смартфону он мешать не будет.

Однако, следует помнить, что для достижения максимальной скорости – необходим и роутер, работающий с таким же стандартом. В остальных случаях получить больше 150 Мбит/с все равно не выйдет.

Многое зависит от роутера и его типа антенны. Антенны адаптивного типа разработаны так, что они определяют местонахождение смартфона и подают на него направленный сигнал, достающий дальше, чем у других типов антенн.

Стандарты беспроводных сетей

Сегодня мы рассмотрим все существующие стандарты IEEE 802.11 , которые предписывают использование определенных методов и скоростей передачи данных, методов модуляции, мощности передатчиков, полос частот, на которых они работают, методов аутентификации, шифрования и многое другое.

С самого начала сложилось так, что некоторые стандарты работают на физическом уровне, некоторые - на уровне среды передачи данных, а остальные — па более высоких уровнях модели взаимодействия открытых систем .

Существуют следующее группы стандартов:

IEEE 802.11а, IEEE 802.11b, IEEE 802.11g, IEEE 802.11n и IEEE 802.11ac дописывают работу сетевого оборудования (физический уровень).
Стандарт IEEE 802.11d, IEEE 802.11e, IEEE 802.11i, IEEE 802.11j, IEEE 802.11h и IEEE.
802.11r — параметры среды, частоты радиоканала, средства безопасности, способы передачи мультимедийных данных и т. д..
IEEE 802.11f IEEE 802.11с- принцип взаимодействия точек доступа между собой, работу радиомостов и т. п.

IEEE 802.11

Стандарт IE ЕЕ 802.11 был «первенцем» среди стандартов беспроводной сети. Работу над ним начали еще в 1990 году. Как и полагается, этим занималась рабочая группа из IEEE, целью которой было создание единого стандарта для радиооборудования, которое работало на частоте 2,4 ГГц. При этом ставилась задача достичь скорости 1 и 2 Мбит/с при использовании методов DSSS и FHSS соответственно.

Работа над созданием стандарта закончилась через 7 лет. Цель была достигнута но скорость. которую обеспечивал новый стандарт, оказалась слишком малой дли современных потребностей. Поэтому рабочая группа из IEEE начала разработку новых, более скоростных, стандартов.
Разработчики стандарта 802.11 учитывали особенности сотовой архитектуры системы.

Почему сотовой? Очень просто: достаточно вспомнить, что волны распространяются в разные стороны на определенный радиус. Получается, что внешне зона напоминает соту. Каждая такая сота работает под управлением базовой станции, в качестве которой выступает точка доступа. Часто соту называют базовой зоной обслуживания .

Чтобы базовые зоны обслуживания могли общаться между собой, существует специальная распределительная система (Distribution System. DS). Недостатком распределительной системы стандарта 802.11 является невозможность роуминга.

Стандарт IEEE 802.11 предусматривает работу компьютеров без точки доступа, в составе одной соты. В этом случае функции точки доступа выполняют сами рабочие станции.

Этот стандарт разработан и ориентирован на оборудование, функционирующее в полосе частот 2400-2483,5 МГц. При этом радиус соты достигает 300 м, не ограничивая топологию сети.

IEEE 802.11а

IEEE 802.11a это один из перспективных стандартов беспроводной сети, который рассчитан на работу в двух радиодиапазонах - 2,4 и 5 ГГц. Используемый метод OFDM позволяет достичь максимальной скорости передачи данных 54 Мбнт/с. Кроме этой, спецификациями предусмотрены и другие скорости:

  • обязательные 6. 12 н 24 Мбнт/с;
  • необязательные - 9, 18.3G. 18 и 54 Мбнт/с.

Этот стандарт также имеет свои преимущества и недостатки. Из преимуществ можно отметить следующие:

  • использование параллельной передачи данных;
  • высокая скорость передачи;
  • возможность подключения большого количества компьютеров.

Недостатки стандарта IEEE 802.1 1a такие:

  • меньший радиус сети при использовании диапазона 5 ГГц (примерно 100 м): J большая потребляемая мощность радиопередатчиков;
  • более высокая стоимость оборудования по сравнению с оборудованием других стандартов;
  • для использования диапазона 5 ГГц требуется наличие специального разрешения.

Для достижения высоких скоростей передачи данных стандарт IEEE 802.1 1a использует в своей работе технологию квадратурной амплитудной модуляции QAM .

IEEE 802.11b

Работа над стандартом IEEE 802 11b (другое название IFEE 802.11 High rate, высокая пропускная способность) была закончена в 1999 году, и именное ним связано название Wi-Fi (Wireless Fidelity, беспроводная точность).

Работа данного стандарта основана на методе прямого расширения спектра (DSSS) с использованием восьмиразрядных последовательностей Уолша. При этом каждый бит данных кодируется с помощью последовательности дополнительных кодов (ССК). Это позволяет достичь скорости передачи данных 11 Мбит/с.

Как и базовый стандарт, IEEE 802.11b работает с частотой 2.4 ГГц, используя не более трех не перекрывающихся каналов. Радиус действия сети при этом составляет около 300 м.

Отличительной особенностью этого стандарта является то, что при необходимость (например, при ухудшении качества сигнала, большой удаленности от точки доступа. различных помехах) скорость передачи данных может уменьшаться вплоть до 1 Мбнт/с. Напротив, обнаружив, что качество сигнала улучшилось, сетевое оборудование автоматически повышает скорость передачи до максимальной Этот механизм называется динамическим сдвигом скорости.

Кроме оборудования стандарта IEEE 802.11b. часто встречалось оборудование IEEE 802.11Ь* . Отличие между этими стандартами заключается лишь в скорости передачи данных. В последнем случае она составляет 22 Мбит/с благодаря использованию метода двоичного пакетного свёрточного кодирования (Р8СС).

IEEE 802.11d

Стандарт IEEE 802.11d определяет параметры физических каналов и сетевого оборудования. Он описывает правила, касающиеся разрешенной мощности излучения передатчиков в диапазонах частот, допустимых законами.

Этот стандарт очень важен, поскольку для работы сетевого оборудования используются радиоволны. Если они не будут соответствовать указанным параметрам. То могут помешать другим устройствам. работающим в этом или близлежащем диапазоне частот.

IEEE 802.11е

Поскольку но сети могут передаваться данные разных форматов и важности, существует потребность в механизме, который бы определял их важность и присваивал необходимый приоритет. За это отвечает стандарт IEEE 802.11е, разработанный с целью передачи потоковых видео- или аудиоданных с гарантированным качеством и доставкой.

IEEE 802.11f

Стандарт IEEE 802.11f разработан с келью обеспечения аутентификации сетевого оборудования (рабочей станции) при перемещении компьютера пользователя от одной точки доступа к другой, то есть между сегментами сети. При этом вступает в действие протокол обмена служебной информацией IAPP (Inter-Access Point Protocol) , который необходим для передачи данных между точками доступа При этом достигается эффективная организация работы распределенных беспроводных сетей.

IEEE 802.11g

Вторым по популярности на сегодняшний день стандартом можно считать стандарт IEEE 802.11g. Целью создания данного стандарта было достижение скорости передачи данных 54 Мбит/с .
Как и IEEE 802.11b. стандарт IEEE 802.11g разработан для работы в частотном диапазоне 2,4 ГГц. IEEE 802.11g предписывает обязательные и возможные скорости передачи данных:

  • обязательные -1;2;5,5;6; 11; 12 и 24 Мбит/с;
  • возможные - 33;36;48 н 54 Мбит/с.

Для достижения таких показателен используется кодирование с помощью последовательности дополнительных кодов (ССК). метод ортогонального частотною мультиплексирования (OFDM), метод гибридного кодирования (ССК-OFDM) и метод двоичною пакетного свёрточного кодирования (РВСС).

Стоит отметить, что одной и той же скорости можно достичь разными методами, однако обязательные скорости передачи данных достигаются только с помощью методов ССК п OFDM , а возможные скорости с помощью методов ССК-OFDM и РВСС.

Преимуществом оборудования стандарта IEEE 802.11g является совместимость с оборудованием IEEE 802.11b. Вы сможете легко использовать свои компьютер с сетевой картой стандарта IEEE. 802.11b для работы с точкой доступа стандарта IEEE 802.11g. и наоборот. Кроме того, потребляемая мощность оборудования этого стандарта намного ниже, чем аналогичного оборудования стандарта IEEE 802.11а.

IEEE 802.11h

Стандарт IEEE 802.11h разработан с целью эффективного управления мощностью излучения передатчика, выбором несущей частоты передачи и генерации нужных отчетов. Он вносит некоторые новые алгоритмы в протокол доступа к среде МАС (Media Access Control, управление доступом к среде), а также в физический уровень стандарта IEEE 802.11a.

В первую очередь это связано с тем, что в некоторых странах диапазон 5 ГГц используется для трансляции спутникового телевидения, для радарного слежения за объектами н т. п., что может вносить помехи в работу передатчиков беспроводной сети.

Смысл работы алгоритмов стандарта IEEE 802.11h заключается в том. что при обнаружении отраженных сигналов (интерференции) компьютеры беспроводной сети (или передатчики) могут динамически переходить в другой диапазон, а также понижать или повышать мощность передатчиков. Это позволяет эффективнее организовать работу уличных и офисных радиосетей.

IEEE 802.11i

Стандарт IEEE 802.11i разработан специально для повышения безопасности работы беспроводной сети. С этой целью созданы разные алгоритмы шифрования и аутентификации, функции зашиты при обмене информацией, возможность генерирования ключей и т. д.:

  • AES (Advanced Encryption Standard, передовой алгоритм шифрования данных) - алгоритм шифрования, который позволяет работать с ключами длиной 128. 15)2 и 256 бит;
  • RADIUS (Remote Authentication Dial-In User Service, служба дистанционной аутентификации пользователя) — система аутентификации с возможностью генерирования ключей для каждой сессии и управления ими. включающая в себя алгоритмы проверки ПОДЛИННОСТИ пакетов и т.д.;
  • TKIР (Temporal Key Integrity Protocol, протокол целостности временных ключей) - алгоритм шифрования данных;
  • WRAP (Wireless Robust Authenticated Protocol, устойчивый беспроводной протокол аутентификации) - алгоритм шифрования данных;
  • ССМР (Counter with Cipher Block Chaining Message Authentication Code Protocol) - алгоритм шифрования данных.

IEEE 802.11 j

Стандарт IEEE 802.11j разработан специально для использования беспроводных сетей в Японии, а именно для работы в дополнительном диапазоне радиочастот 4.9-5 ГГц. Спецификация предназначена для Японии и расширяет стандарт 802.11а добавочным каналом 4.9 ГГц.

На данный момент частота 4,9 ГГц рассматривается как дополнительный диапазон для использования в США. Из официальных источников известно, что этот диапазон готовится для использования органами общественной и национальной безопасности.
Данным стандартом расширяется диапазон работы устройств стандарта IEEE 802.11a.

IEEE 802.11n

На сегодняшний день стандарт IEEE 802.11n самый распространенный из всех стандартов, касающихся беспроводных сетей.

В основе стандарта 802.11n:

  • Увеличение скорости передачи данных;
  • Расширение зоны покрытия;
  • Увеличение надежности передачи сигнала;
  • Увеличение пропускной способности.

Устройства 802.11n могут работать в одном из двух диапазонов 2.4 или 5.0 ГГц.

На физическом уровне (PHY) реализована усовершенствованная обработка сигнала и модуляции, добавлена возможность одновременной передачи сигнала через четыре антенны.

На сетевом уровне (MAC) реализовано более эффективное использование доступной пропускной способности. Вместе эти усовершенствования позволяют увеличить теоретическую скорость передачи данных до 600 Мбит/с – увеличение более чем в десять раз, по сравнению с 54 Мбит/с стандарта 802.11a/g (в настоящее время эти устройства уже считаются устаревшими).

В реальности, производительность беспроводной локальной сети зависит от многочисленных факторов, таких как среда передачи данных, частота радиоволн, размещение устройств и их конфигурация.

При использовании устройств стандарта 802.11n, крайне важно понять, какие именно усовершенствования были реализованы в этом стандарте, на что они влияют, а также как они совмещаются и сосуществуют с сетями устаревшего стандарта 802.11a/b/g беспроводных сетей.

Важно понять, какие именно дополнительные особенности стандарта 802.11n реализованы и поддерживаются в новых беспроводных устройствах.

Одним из основных моментов стандарта 802.11n является поддержка технологии MIMO (Multiple Input Multiple Output, Многоканальный вход/выход).
С помощью технологии MIMO реализована способность одновременного приема/передачи нескольких потоков данных через несколько антенн, вместо одной.

Стандарт 802.11n определяет различные антенные конфигурации «МхN», начиная с «1х1» до «4х4 » (самые распространенные на сегодняшний день это конфигурации «3х3» или «2х3»). Первое число (М) определяет количество передающих антенн, а второе число (N) определяет количество приемных антенн.

Например, точка доступа с двумя передающими и тремя приемными антеннами является «2х3» MIMO -устройством. В дальнейшем я более подробно опишу этот стандарт

IEEE 802.11г

Ни в одном беспроводном стандарте толком не описаны правила роуминга, то есть перехода клиента от одной зоны к другой. Это намереваются сделать в стандарте IEEE 802.11г.

Стандарт IEEE 802.11ac

Он обещает гигабитные беспроводные скорости для потребителей.

Первоначальный проект технической спецификации 802.11ac подтвердили рабочей группой (TGac) в прошлом году. В то время как ратификация Wi-Fi Alliance ожидается в конце этого года. Несмотря на то, что стандарт 802.11ac пока в стадии проекта и еще должен быть ратифицирован Wi-Fi Alliance и IEEE . Мы уже начинаем видеть продукты гигабитного Wi-Fi, доступные на рынке.

Характеристики стандарта нового поколения Wi-Fi 802.11ac:

WLAN 802.11ac использует целый ряд новых методов для достижения огромного прироста производительности к теоретически поддерживает гигабитный потенциал и обеспечение высоких пропускных способностей, таких как:

  • 6GHz полоса
  • Высокая плотность модуляции до 256 QAM.
  • Более широкие полосы пропускания — 80MHz для двух каналов или 160MHz для одного канала.
  • До восьми Multiple Input Multiple Output пространственных потоков.

Многопользовательские MIMO низкого энергопотребления 802.11ac ставят новые проблемы для разработки инженеров, работающих со стандартом. Далее мы обсудим эти проблемы и доступные решения, которые помогут разработке новых продуктов, основанных на этом стандарте.

Более широкая полоса пропускания:

802.11ac имеет более широкую полосу пропускания 80 MHz или даже 160 MHz по сравнению с предыдущим до 40 MHz в стандарте 802.11n. Более широкая полоса пропускания приводит к улучшению максимальной пропускной способности для цифровых систем связи.

Среди наиболее сложных задач проектирования и производства — генерация и анализ сигналов широкой полосы пропускания для 802.11ac. Потребуется тестирование оборудования, способного обрабатывать 80 или 160 MHz для проверки передатчиков, приемников и компонентов.

Для генерации 80 MHz сигналов, многие генераторы RF сигналов не имеют достаточно высокой частоты дискретизации для поддержки типичного минимума 2X соотношения пере дискретизации, которые дадут в результате необходимые образы сигналов. Используя правильные фильтрации и пере дискретизации сигнала из Waveform файла, возможно генерировать 80 MHz сигналы с хорошими спектральными характеристиками и EVM.

Для генерации сигналов 160 MHz , в широком диапазоне генератор волновых сигналов произвольной формы (AWG). Такие как Agilent 81180A, 8190A можно использовать для создания аналоговых I/Q сигналов.

Эти сигналы можно применить к внешнему I/Q. Как входы векторного генератора сигналов для преобразования частоты RF. Кроме того, можно создать 160 MHz сигналы с использованием 80 +80 MHz режима поддерживающего стандарт для создания двух сегментов 80 MHz в отдельных MCG или ESG генераторах сигнала, объединив затем радиосигналы.

MIMO:

MIMO является использованием нескольких антенн для повышения производительности системы связи. Вы могли видеть некоторые Wi-Fi точки доступа, имеющие более одной антенны. Которые торчат из них, — эти маршрутизаторы используют технологию MIMO.

Проверкой MIMO конструкций является изменение. Многоканальный генерации и анализ сигналов можно использовать для представления о производительности устройств MIMO. И оказания помощи в устранении неполадок и проверки проектов.

Усилитель Линейности:

Усилитель Линейности является характеристикой и усилителем. С помощью которого выходной сигнал усилителя остается верным входному сигналу по мере возрастания. Реально усилители линейности линейны только до предела, после которого выход насыщается.

Есть много методов для улучшения линейности усилителя. Цифровой предыскажения является одним из таких технику. Автоматизация проектирования программного обеспечения, как SystemVue обеспечивает приложение. Которое упрощает и автоматизирует цифрового дизайна предыскажений для усилителей мощности.

Совместимость с предыдущими версиями

Хотя стандарт 802.11n используется уже в течение многих лет. Но до сих пор также работают многие маршрутизаторы и беспроводные устройства более старых протоколов. Таких как 802.11b и 802.11g, правда их реально мало. Также и при переходе к 802.11ac, будут поддерживаться старые Wi-Fi стандарты и обеспечиваться обратная совместимость.

Пока это все. Если у Вас еще есть вопросы, можете смело написать мне в,

Стандарты передачи данных

Ethernet

Ethernet — стандарт для построения ЛВС со скоростью передачи данных 10, 100 или 1000 Мбит/.

На сегодняшний день Ethernet является самым распространенным стандартом локальных сетей. В зависимости от типа физической среды передачи данных стандарт Ethernet имеет множество различных модификаций. Первые версии использовали шинную топологию и работали по коаксиальному кабелю (50 Ом) — 10Base5 (до 500 м) и 10Base-2 (до 185 м). Все последующие версии сети Ethernet имеют топологию звезды и работают по витым парам (100 Ом) или оптическим волокнам. Версии 10Base-T (10 Мбит/с) и 100Base-T4 используют кабели категории 3 (2 и 4 пары, соответственно), версия 100BASE-TX (100Мбит/с) использует две пары категории 5. В настоящее время все большую применимость находит сеть 1000Base-T (1 Гбит/с), которая использует четыре пары улучшенной категории 5, категории 6 и выше.

ATM — универсальная транспортная сеть для передачи голоса, данных и видео. Имеет скорости передачи 25, 155, 622 и 2400 Мбит/c.

Первые две разновидности могут работать по двум витым парам категории 5, аппаратура на 155, 622 и 2400Мбит/c использует в качестве среды передачи оптический кабель.

Стандарт FDDI

FDDI - оптоволоконный интерфейс разделяемых данных. В нем так же, как и в Token Ring, используется схема передачи маркера. Отметим, что в FDDI маркер посылается сразу же за передачей пакета в сеть, тогда как в Token Ring маркер генерируется только после возвращения к рабочей станции посланного ей сообщения. Кроме того, FDDI использует два независимых кольца с противоположной ориентацией для передачи данных (одно из них является резервным). По сравнению с Token Ring время обладания маркера ограничено. В качестве физической среды в FDDI может использоваться только оптоволоконный кабель. Максимальная скорость передачи данных по сети FDDI равна 100 Мбит/с. Оборудование для сетей FDDI в основном производят фирмы DEC, Cisco, 3COM.

Стандарт Token Ring

В ЛВС с передачей маркера сообщения передаются последовательно от одного узла к другому вне зависимости от того, какую топологию имеет сеть - кольцевую или звездообразную. Каждый узел сети получает пакет от соседнего узла. Если данный узел не является адресатом, то он передает тот же самый пакет следующему узлу. Передаваемый пакет может содержать либо данные, направляемые от одного узла другому, либо маркер. Маркер - это короткое сообщение, являющееся признаком незанятости сети. В том случае, когда рабочей станции необходимо передать сообщение, ее сетевой адаптер дожидается поступления маркера, а затем формирует пакет, содержащий данные, и передает этот пакет в сеть. Пакет распространяется по ЛВС от одного сетевого адаптера к другому до тех пор, пока не дойдет до компьютера-адресата, который произведет в нем стандартные изменения. Эти изменения являются подтверждением того, что данные достигли адресата. После этого пакет продолжает движение дальше по ЛВС, пока не возвратится в тот узел, который его сформировал. Узел-источник убеждается в правильности передачи пакета и возвращает в сеть маркер. Важно отметить, что в ЛВС с передачей маркера функционирование сети организовано так, что коллизий возникнуть не может. Скорость передачи данных сетей Token Ring достигает 16 Мбит/с. Оборудование для сетей Token Ring производят многие фирмы, в том числе IBM, 3COM.

Организации занимающиеся стандартизацией в сетях передачи данных

Международная организация по стандартизации - основана в 1946 г. для разработки международных стандартов в различных областях техники, производственной и других видах деятельности.

Модель OSI (Open Systems Interconnection) - взаимодействие открытых систем - семиуровневая модель протоколов передачи данных, разработанная Международной организацией по стандартизации (см. – “ISO ”) и CCITT (Consultative Committee for International Telephony and Telegraphy) для сопряжения различных видов вычислительного и коммуникационного оборудования различных производителей.]

IEEE (Institute of Electrical and Electronic Engineers) - Институт инженеров по электротехнике и радиоэлектронике (ИИЭР) - организация, созданная в США в 1963 г. Является разработчиком ряда стандартов для локальных вычислительных систем, в том числе - по кабельной системе, физической топологии и методам доступа к среде передачи данных. Наибольшую известность получила серия стандартов 802 (см. далее), ответственность за которые несут Комитет I EEE 802 и (непосредственно) его рабочие группы - подкомитеты.

ITU (International Telecommunications Union) - Международный союз электросвязи (структурное подразделение ООН), ранее - Международный консультативный комитет по телефонии и телеграфии - МККТТ .

ITU-T - Комитет по стандартизации телекоммуникаций в составе ITU (см. ранее), его рабочий орган - Сектор стандартизации телекоммуникаций - TSS, ITU-TSS (Telecommunications Standardization Sector). В задачи ITU-T входит установление стандартов в области электросвязи. Членами комитета являются министерства связи стран - членов ООН, частные компании, научные организации и торговые объединения.

Каналы передачи данных

Преимуществами данного подхода является сокращение количества специалистов пользователя на местах, единое управление сетью, оптимальность сервисной поддержки сети в ходе её эксплуатации и развития и прочие.

Корпоративным пользователям компания предоставляет услуги по организации виртуальных частных сетей второго уровня (VPN Layer 2). При необходимости возможна организация каналов точка-точка или точка-многоточка. В качестве протоколов канального уровня используются протоколы Frame-Relay или Ethernet 802.1q.

При такой организации каналов пользователи имеют возможность самостоятельно организовывать свою корпоративную IP-сеть (VPN Layer 3) путем наложения ее на предоставленные каналы второго уровня.

Для организации каналов передачи данных компания рекомендует использование оборудования производителя Cisco Systems (при подключении по протоколу Frame-Relay оборудование должно быть оснащено интерфейсами V.35 или G.703/G.704; при подключении по протоколу 802.1q — интерфейсами 10/100/1000 Base-TX/FX). Компания готова оказать содействие по выбору и приобретению данного оборудования, с последующей его первичной настройкой.

В качестве физических линий связи на "последней миле" могут быть использованы оптические линии, медные линии с использованием xDSL-протоколов, каналы первичных сетей PDH/SDH.

Организация передачи данных

В ЭВМ используются два основных способа организации передачи данных между памятью и периферийными устройствами: программно-управляемая передача и прямой доступ к памяти (ПДП).

Программно-управляемая передача данных осуществляется при непосредственном участии и под управлением процессора. Например, при пересылке блока данных из периферийного устройства в оперативную память процессор должен выполнить следующую последовательность шагов:

сформировать начальный адрес области обмена ОП;

занести длину передаваемого массива данных в один из внутренних регистров, который будет играть роль счетчика;

выдать команду чтения информации из УВВ; при этом на шину адреса из МП выдается адрес УВВ, на шину управления — сигнал чтения данных из УВВ, а считанные данные заносятся во внутренний регистр МП;

выдать команду записи информации в ОП; при этом на шину адреса из МП выдается адрес ячейки оперативной памяти, на шину управления — сигнал записи данных в ОП, а на шину данных выставляются данные из регистра МП, в который они были помещены при чтении из УВВ;

модифицировать регистр, содержащий адрес оперативной памяти;

уменьшить счетчик длины массива на длину переданных данных;

если переданы не все данные, то повторить шаги 3-6, в противном случае закончить обмен.

Как видно, программно-управляемый обмен ведет к нерациональному использованию мощности микропроцессора, который вынужден выполнять большое количество относительно простых операций, приостанавливая работу над основной программой. При этом действия, связанные с обращением к оперативной памяти и к периферийному устройству, обычно требуют удлиненного цикла работы микропроцессора из-за их более медленной по сравнению с микропроцессором работы, что приводит к еще более существенным потерям производительности ЭВМ.

Альтернативой программно-управляемому обмену служит прямой доступ к памяти — способ быстродействующего подключения внешнего устройства, при котором оно обращается к оперативной памяти, не прерывая работы процессора. Такой обмен происходит под управлением отдельного устройства — контроллера прямого доступа к памяти (КПДП).

Перед началом работы контроллер ПДП необходимо инициализировать: занести начальный адрес области ОП, с которой производится обмен, и длину передаваемого массива данных. В дальнейшем по сигналу запроса прямого доступа контроллер фактически выполняет все те действия, которые обеспечивал микропроцессор при программно-управляемой передаче.

Последовательность действий КПДП при запросе на прямой доступ к памяти со стороны устройства ввода-вывода следующая:

Принять запрос на ПДП (сигнал DRQ) от УВВ.

Сформировать запрос к МП на захват шин (сигнал HRQ).

Принять сигнал от МП (HLDA), подтверждающий факт перевода микропроцессором своих шин в третье состояние.

Сформировать сигнал, сообщающий устройству ввода-вывода о начале выполнения циклов прямого доступа к памяти (DACK).

Сформировать на шине адреса компьютера адрес ячейки памяти, предназначенной для обмена.

Выработать сигналы, обеспечивающие управление обменом (IOR, MW для передачи данных из УВВ в оперативную память и IOW, MR для передачи данных из оперативной памяти в УВВ).

Уменьшить значение в счетчике данных на длину переданных данных.

Проверить условие окончания сеанса прямого доступа (обнуление счетчика данных или снятие сигнала запроса на ПДП). Если условие окончания не выполнено, то изменить адрес в регистре текущего адреса на длину переданных данных и повторить шаги 5-8.

^ Прямой доступ к памяти позволяет осуществлять параллельно во времени выполнение процессором программы и обмен данными между периферийным устройством и оперативной памятью.

Обычно программно-управляемый обмен используется в ЭВМ для операций ввода-вывода отдельных байт (слов), которые выполняются быстрее, чем при ПДП, так как исключаются потери времени на инициализацию контроллера ПДП, а в качестве основного способа осуществления операций ввода-вывода используют ПДП. Например, в стандартной конфигурации персональной ЭВМ обмен между накопителями на магнитных дисках и оперативной памятью происходит в режиме прямого доступа.

Протоколы теледоступа.

Специфика телекоммуникаций проявляется прежде всего в прикладных протоколах. Среди них наиболее известны протоколы, связанные с Internet, и протоколы ISO-IP (ISO 8473), относящиеся к семиуровневой модели открытых систем. К прикладным протоколам Internet относятся следующие:

Telnet — протокол эмуляции терминала, или, другими словами, протокол реализации дистанционного управления используется для подключения клиента к серверу при их размещении на разных компьютерах, пользователь через свой терминал имеет доступ к компьютеру-серверу;

FTP — протокол файлового обмена (реализуется режим удаленного узла), клиент может запрашивать и получать файлы с сервера, адрес которого указан в запросе;

HTTP (Hypertext Transmission Protocol) — протокол для связи WWW-серверов и WWW-клиентов;

NFS — сетевая файловая система, обеспечивающая доступ к файлам всех UNIX-машин локальной сети, т.е. файловые системы узлов выглядят для пользователя, как единая файловая система;

SMTP, IMAP, POP3 — протоколы электронной почты.

Указанные протоколы реализуются с помощью соответствующего программного обеспечения. Для Telnet, FTP, SMTP на серверной стороне выделены фиксированные номера протокольных портов.

В семиуровневой модели ISO используются аналогичные протоколы. Так, протокол VT соответствует протоколу Telnet, FTAM — FTP, MOTIS — SMTP, CMIP — SNMP, протокол RDA (Remote Database Access) предназначен для доступа к удаленным базам данных.

14.15.16.17.18. Табулирование функции - это вычисление значений функции при изменении аргумента от некоторого начального значения до некоторого конечного значения с определённым шагом. Именно так составляются таблицы значений функций, отсюда и название - табулирование. Необходимость в табулировании возникает при решении достаточно широкого круга задач. Например, при численном решении нелинейных уравнений f(x) = 0, путём табулирования можно отделить (локализовать) корни уравнения, т.е. найти такие отрезки, на концах которых, функция имеет разные знаки. С помощью табулирования можно (хотя и очень грубо) найти минимум или максимум функции. Иногда случается так, что функция не имеет аналитического представления, а её значения получаются в результате вычислений, что часто бывает при компьютерном моделировании различных процессов. Если такая функция будет использоваться в последующих расчётах (например, она должна быть проинтегрирована или продифференцирована и т.п.), то часто поступают следующим образом: вычисляют значения функции в нужном интервале изменения аргумента, т.е. составляют таблицу (табулируют), а затем по этой таблице строят каким-либо образом другую функцию, заданную аналитическим выражением (формулой). Необходимость в табулировании возникает также при построении графиков функции на экране компьютера.

Экстре́мум (лат. extremum - крайний) в математике - максимальное или минимальное значение функции на заданном множестве. Точка, в которой достигается экстремум, называется точкой экстремума. Соответственно, если достигается минимум - точка экстремума называется точкой минимума, а если максимум - точкой максимума. В математическом анализе выделяют также понятие локальный экстремум (соответственно минимум или максимум).

Беспроводная передача данных

Автор

Липатников Александр

Название

Беспроводная передача данных

Аннотация

В данной статье рассмотрены различные виды технологий беспроводной передачи данных.

Краткое описание

Информационные сети создают реальную возможность быстрого и удобного доступа пользователя ко всей информации, накопленной человечеством за всю свою историю. Электронная почта и телеконференции, поиск информации во Всемирной паутине и в файловых архивах, интерактивное общение,онлайн игры, прослушивание музыки, покупки в Интернет-магазинах стали повседневной практикой многих пользователей компьютеров в развитых странах.

Стандарты сотовых сетей: от 1G до 5G

В настоящее время беспроводные технологии стали более надежными и в некоторых ситуациях их развертывание обходится дешевле, чем создание кабельных сетей. Существует множество беспроводных технологий, наиболее часто известных пользователям по их маркетинговым названиям, таким как Wi-Fi, WiMAX, Bluetooth. Каждая технология обладает определёнными характеристиками, которые определяют её область применения. Беспроводные технологии служат для передачи информации на расстояние между двумя и более точками, не требуя связи их проводами. Для передачи информации может использоваться инфракрасное излучение, радиоволны, оптическое или лазерное излучение.

Цель работы:

  • Познакомиться с беспроводными стандартами передачи данных,изучить классификацию и область применения беспроводных сетей

Классификация:

По дальности действия

  • Беспроводные персональные сети WPAN (Wireless Personal Area Networks). К этим сетям относятся Bluetooth.
  • Беспроводные локальные сети WLAN (Wireless Local Area Networks). К этим сетям относятся сети стандарта Wi-Fi.
  • Беспроводные сети масштаба города WMAN (Wireless Metropolitan Area Networks). Примеры технологий — WiMAX.
  • Беспроводные глобальные сети WWAN - (Wireless Wide Area Network). Примеры технологий - CSD, GPRS, EDGE, EV-DO, HSPA.

По применению

  • Корпоративные беспроводные сети - создаваемые компаниями для собственных нужд.
  • Операторские беспроводные сети - создаваемые операторами связи для возмездного оказания услуг связи.

По топологии

Отличия проводных и беспроводных технологий передачи данных

Вывод

Исследуя тему, я пришел к выводу, что беспроводные сети — отличный способ передачи информации между разными устройствами, который не требует непосредственного соединения этих устройств проводами, и обеспечивает постоянный доступ в интернет в максимально возможном радиусе перемещения.

Полезные ресурсы

Wi-Fi для начинающих: стандарты

Возможность создать локальную сеть без использования кабелей выглядит очень заманчивой и преимущества такого подхода очевидны. Возьмем, к примеру, стандартную квартиру. При создании локальной сети первый вопрос, который возникает перед владельцем компьютера, – как же прятать все кабели, чтобы они не путались под ногами?

Сравнение основных стандартов цифровой передачи данных.

Для этого приходится или закупать специальные короба, которые крепятся на потолке или стенах, или использовать другие методы, включая самые очевидные, например, спрятать кабели под ковер.

Однако мало кому захочется тратить время, деньги и усилия на прокладку кабеля так, чтобы он не бросался в глаза. Кроме того, всегда существует риск перегнуть определенный сегмент кабеля, в результате чего сеть для отдельного компьютера или всех компьютеров окажется неработоспособной.

Решением этой проблемы являются беспроводные сети (WLAN). Основная технология, применяемая для создания беспроводных сетей на основе радиоволн, – технология Wi-Fi. Эта технология стремительно завоевывает популярность, и уже многие домашние локальные сети созданы на ее основе. В настоящее время существует три основных стандарта Wi-Fi, каждый из которых обладает определенными характеристиками, – стандарты 802.11b, 802.11a и 802.11g. Речь идет о наиболее популярных стандартах, поскольку в реальности их намного больше, причем некоторые из них все еще проходят процесс стандартизации. Например, оборудование стандарта 802.11n уже вовсю продается, однако стандарт все еще развивается.

Структура обычной беспроводной сети практически не отличается от структуры проводной сети. Все компьютеры в сети оснащаются беспроводным адаптером, который имеет антенну и подключается в разъем PCI компьютера (внутренний адаптер) или разъем USB (внешний адаптер). Для ноутбуков можно использовать как внешние адаптеры USB, так и адаптеры для разъема PCMCIA, кроме того, многие ноутбуки изначально оснащены адаптером Wi-Fi. Взаимодействие компьютеров и портативных систем, оснащенных адаптерами Wi-Fi, обеспечивается точкой доступа, которую можно считать аналогом коммутатора в проводной сети.

В настоящее время существует три основных стандарта беспроводных сетей:

  • 801.11b;
  • 802.11a;
  • 802.11g.

Рассмотрим эти стандарты подробнее.

Стандарт 802.11 b был первым сертифицированным стандартом Wi-Fi. Все устройства, совместимые с 801.11b, должны иметь соответствующую наклейку с надписью Wi-Fi. Основные характеристики 801.11b выглядят следующим образом:

  • скорость передачи данных до 11 Мбит/с;
  • радиус действия до 50 м;
  • частота 2,4 ГГц (совпадает с частотой некоторых радиотелефонов и микроволновых печей);
  • устройства 802.11b обладают наименьшей, по сравнению с другими устройствами Wi-Fi, ценой.

Основное преимущество 801.11b – всеобщая доступность и низкая цена. Есть и существенные недостатки, такие как низкая скорость передачи данных (практически в 9 раз меньше, чем скорость в сети 100BASE-TX) и использование радиочастоты, совпадающей с частотой радиоизлучения некоторых бытовых устройств.

Стандарт 802.11 a был разработан для решения проблемы низкой пропускной способности сетей 801.11b. Характеристики 801.11a представлены ниже:

  • радиус действия до 30 м;
  • частота 5 ГГц;
  • несовместимость с 802.11b;
  • более высокая цена устройств, по сравнению с 802.11b.

Преимущества очевидны – скорость передачи данных до 54 Мбит/с и рабочая частота, не используемая в бытовой технике, однако достигается это за счет более низкого радиуса действия и отсутствия совместимости с популярным стандартом 802.11b.

Третий стандарт, 802.11 g , постепенно обрел большую популярность за счет скорости передачи данных и совместимости с 802.11b. Характеристики этого стандарта следующие:

  • скорость передачи данных до 54 Мбит/с;
  • радиус действия до 50 м;
  • частота 2,4 ГГц;
  • полная совместимость с 802.11b;
  • цена практически сравнялась с ценой устройств 802.11b.

Устройства стандарта 802.11g можно рекомендовать для создания беспроводной домашней сети. Скорости передачи данных 54 Мбит/с и радиуса действия до 50 м от точки доступа будет достаточно для любой квартиры, однако для более крупного помещения использование беспроводной связи данного стандарта может оказаться неприемлемым.

Скажем и о стандарте 802.11n, который совсем скоро вытеснит три других стандарта.

  • скорость передачи данных до 200 Мбит/с (а в теории- и до 480 Мбит/с);
  • радиус действия до 100 метров;
  • частота 2,4 или 5 Ггц;
  • совместимость с 802.11b/g и 802.11a;
  • цена стремительно снижается.

Конечно, 802.11n – самый классный и перспективный стандарт. Радиус действия больше и скорость передачи многократно выше, чем у трех других стандартов. Однако не спешите бежать в магазин. У 802.11n есть несколько недостатков, о которых нужно знать.

ASUS WL-500w один из лучших маршрутизаторов стандарта 802.11n .

Самое главное – чтобы насладиться всеми преимуществами 802.11n, необходимо, чтобы все устройства в беспроводной сети поддерживали этот стандарт.

Если одно из устройств работает в стандарте, скажем, 802.11g, то маршрутизатор 802.11n будет переведен в режим совместимости, и его преимущества по скорости и дальности попросту исчезнут. Так что хотите сеть 802.11n – нужно, чтобы все устройства, которые будут в беспроводной сети, поддерживали этот стандарт.

Более того, желательно, чтобы устройства 802.11n были от одной компании. Поскольку стандарт еще разрабатывается, разные компании по своему реализуют его возможности, и нередко бывают казусы, когда беспроводное устройство от Asus стандарта 802.11n не хочет нормально работать с Linksys и т.д.

Так что прежде чем внедрять 802.11n у себя дома, подумайте, учли ли вы эти факторы. Ну и почитайте, конечно, что пишут люди на форумах, где активно обсуждают эту тему.

Если в квартире несколько комнат со стенами из железобетона, скорость передачи на расстоянии уже 20-30 м будет ниже максимальной. Скорость передачи данных от точки доступа к устройству будет уменьшаться пропорционально расстоянию до этого устройства, поскольку для удержания устойчивого сигнала скорость будет понижаться автоматически.

Желательно не размещать точку доступа рядом с бытовыми или офисными устройствами, такими как микроволновые печи, радиотелефоны, факсы, принтеры и т.д .

Приняв решение внедрить беспроводную сеть, следует выбрать соответствующее оборудование, к которому относится, как уже было сказано ранее, два ключевых компонента – точка доступа и адаптеры беспроводной связи. Об этом рассказывается в статье Wi-Fi для начинающих: оборудование“.

04.06. Раздел Беспроводная сеть

Технология Wi-Fi – принципы работы, преимущества и недостатки

Происхождение ставшей уже привычной аббревиатуры Wi-Fi в некоторых источниках изначально велось от английской фразы Wireless Fidelity, которую можно перевести — «высокая точность беспроводной передачи данных». В ней заключается некая игра слов для привлечения потребителей созвучностью с другим известным сокращением Hi-Fi (High Fidelity — высокая точность). На сегодняшний день от такой формулировки отказались и термин «Wi-Fi» не имеет официальной расшифровки. Сокращение Wi-Fi используется для обозначения торговой марки Wi-Fi Alliance и обозначает технологию беспроводных сетей, построенных с использованием стандарта IEEE 802.11 . Под этим обозначением развивается целый набор стандартов передачи цифровых данных по каналам радиосвязи. Для соответствия стандарту IEEE 802.11 оборудование должно быть протестировано в Wi-Fi Alliance с последующим получением соответствующего сертификата и права использования логотипа Wi-Fi.

Принцип действия Wi-Fi

Принцип работы беспроводной сети построен на использовании радиоволн, а сам обмен данными во многом напоминает переговоры с использованием радиосвязи:

  • Адаптер беспроводной связи трансформирует информацию в радиосигнал и передает его в эфир через антенну.
  • Беспроводной маршрутизатор принимает и делает обратное преобразование сигнала. Далее информация направляется в сеть Интернет по кабелю.
  • Похожим образом осуществляется и прием информации. После получения информации из Интернета маршрутизатор преобразует ее в радиосигнал и отправляет через антенну на адаптер беспроводной связи устройства.

Применяемые в сетях Wi-Fi приемники и передатчики напоминают устройства, используемые в сотовых телефонах и дуплексных портативных радиостанциях. Они передают и принимают радиоволны, а также преобразовывают цифровой сигнал в радиоволны и наоборот. Отличие устройств Wi-Fi от аналогичных устройств состоит в том, что они используют частоты 2,4 ГГц или 5 ГГц, которые существенно выше, что позволяет передавать больше данных.

Стандарт передачи данных Ethernet

В сетях Wi-Fi используются несколько модификаций стандарта 802.11:

  • Стандарт 802.11a предусматривает передачу данных на частоте 5 ГГц со скоростью до 54 Мбит/сек. Используется мультиплексирование с ортогональным разделением частот (orthogonal frequency-division multiplexing OFDM) и более эффективный алгоритм кодирования, предусматривающий разбиение исходного сигнала на несколько подсигналов на стороне передатчика, что уменьшает воздействие помех.
  • Стандарт 802.11b — самый медленный, но имеет наименьшую стоимость, благодаря которой он получил широкое распространение на некоторое время. Сейчас, по мере удешевления, ему на смену приходят стандарты с более высокой скоростью. 802.11b использует частотный диапазон 2,4 ГГц, а скорость передачи данных составляет не более 11 Мбит/сек при использовании манипуляции с дополняющим кодом CCK (complementary code keying).
  • Стандарт 802.11g работает в диапазоне 2,4 ГГц и обеспечивает значительно большую скорость передачи информации – до 54 мегабит в секунду. В связи с перегрузками сети реальная скорость, как правило, не превышает 24 мегабит в секунду. Увеличение скорости стало возможным благодаря использованию такого же принципа кодирования OFDM, который используется в 802.11a.
  • Наибольшее распространение получил стандарт 802.11n , в котором существенно увеличена скорость обмена информацией (140 мегабит в секунду) и расширен частотный диапазон. Стандарт был утверждён Институтом инженеров по электротехнике и электронике IEEE (Institute of Electrical and Electronics Engineers) относительно недавно — 11 сентября 2009 года.

Другие стандарты семейства 802.11 разработаны для специализированных сфер применения беспроводных сетей. В частности, для использования в региональных сетях WAN (wide area network), а также внутренних сетях транспортных средств или технологиях, обеспечивающих переключение из одной беспроводной сети в другую.

Приемопередатчики сетей Wi-Fi рассчитаны на работу в одном из трех частотных диапазонов, причем возможно быстрое переключение из одного диапазона в другой. За счет применения такого способа удается снизить воздействие помех и одновременно использовать беспроводную связь несколькими устройствами. Так как все такие устройства оборудованы адаптерами беспроводной связи, для связи с сетью Интернет нескольких устройств может использоваться один маршрутизатор. Такая организация связи очень удобна, практически невидима и достаточно надежна, однако при выходе из строя маршрутизатора или при одновременной попытке большого количества пользователей сети воспользоваться широкополосной связью возможно возникновение взаимных помех или даже неожиданный разрыв связи.

Традиционная схема сети с технологией Wi-Fi содержит как минимум одну точку доступа и одного клиента. Возможна коммутация двух абонентов в режиме точка-точка (Ad-hoc). При этом точка доступа отсутствует, а клиенты соединяются напрямую через сетевые адаптеры. Для передачи своего идентификационного номера в сети SSID каждые 100 мс точка доступа посылает специальные сигнальные пакеты на скорости передачи данных 0,1 Мбит/сек, которая является минимальной для сетей Wi-Fi. Узнав SSID, клиент определяет возможность подключения к данной точке доступа. Если приёмник оказывается в зоне действия 2-х точек доступа с одинаковым SSID, он вправе выбрать одну из них по уровню сигнала. Технология Wi-Fi предоставляет клиенту свободу при определении критериев для соединения.

Преимущества Wi-Fi

Технология беспроводной передачи данных обладает определенными достоинствами:

  • Возможность разворачивания сети без использования кабеля, что уменьшает стоимость организации и/или дальнейшего расширения сети. Это особенно важно в местах, где отсутствует возможность прокладки кабель.
  • Предоставление доступа к сети мобильным устройствам.
  • Широкое распространение на рынке Wi-Fi-устройств, а также их гарантированная совместимость благодаря обязательной сертификации оборудования Wi-Fi Alliance.
  • Мобильность клиентов и возможность пользования Интернетом в любой обстановке.
  • Возможность подключения к сети в зоне действия Wi-Fi нескольких пользователей с различных устройств – телефонов, компьютеров, ноутбуков и т.п.
  • Низкий уровень излучения Wi-Fi-устройствами в момент передачи данных (в 10 раз меньше, чем у мобильного телефона).

Недостатки Wi-Fi

Среди недостатков технологии следует отметить:

  • Частотный диапазон 2.4 GHz используют многие другие устройства, поддерживающие Bluetooth, а также микроволновые печи, что может создавать определенные помехи.
  • Производители оборудования указывают скорость на L1, однако реальная скорость передачи на L2 в сети Wi-Fi зависит от наличия физических препятствий между устройствами, наличия помех от других электронных устройств, взаимного расположения устройств и всегда ниже заявленной, что создает впечатление завышения скорости производителем.
  • В разных странах частотные диапазоны и эксплуатационные ограничения отличаются.

    Так, в некоторых европейских странах разрешено использование двух дополнительных каналов, в то время, как в США они запрещены.

    В Японии используется еще один канал в верхнем сегменте диапазона. В некоторых странах (например, России, Белоруссии, Италии) обязательной является регистрация всех наружных сетей Wi-Fi или регистрация Wi-Fi-оператора.

  • В России также подлежат обязательной регистрации точки беспроводного доступа и адаптеры Wi-Fi с мощностью излучения, превышающей 100 мВт.
  • Даже при правильной конфигурации алгоритм шифрования WEP может быть относительно легко взломан. Поэтому новые устройства совместимы с более совершенным протоколом шифрования данных WPA и WPA2, чему способствовало принятие в июне 2004 года стандарта IEEE 802.11i (WPA2). Оба протокола требуют более устойчивый пароль. Во многих организациях для защиты от вторжения используется дополнительное шифрование (например, VPN).
  • В режиме ad-hoc доступна лишь скорость 11 Мбит/сек (802.11b) и легко взламываемый алгоритм шифрования WEP.

Реальная скорость соединения, используемая в технологии Wi-Fi.

Вопрос:
Где обещанная скорость 300 Мбит/с (или 150 Мбит/с) при подключении беспроводных устройств на стандарте 802.11n к роутеру?

Ответ:
300 Мбит/с - максимальная скорость работы на физическом уровне по стандарту IEEE 802.11n при соединении с адаптерами, использующими два пространственных потока и канал 40 МГц для приема и передачи. Действительная скорость передачи данных в беспроводной сети зависит от особенностей и настроек клиентского оборудования, числа клиентов в сети, препятствий на пути прохождения сигнала, а также наличия других беспроводных сетей и радиопомех в том же диапазоне.

150 Мбит/с - максимальная скорость работы на физическом уровне по стандарту IEEE 802.11n при соединении с адаптерами, использующими один пространственный поток и канал 40 МГц для приема и передачи.

Начнем с того, что многие пользователи неверно ориентируются на скорость подключения в мегабитах в секунду (Мбит/с), которое отображается в строке Скорость (Speed) на закладке Общие (General) в окне Состояние (Status) беспроводного соединения в операционной системе Windows.

Пользователи ошибочно думают, что это значение показывает реальную пропускную способность конкретного сетевого соединения. Данная цифра отображается драйвером беспроводного адаптера и показывает, какая скорость подключения на физическом уровне используется в настоящее время в рамках выбранного стандарта, то есть операционная система сообщает лишь о текущей (мгновенной) физической скорости подключения 300 Мбит/c (её называют ещё канальной скоростью), но реальная пропускная способность соединения при передаче данных может быть значительно ниже, в зависимости от настроек точки доступа с поддержкой 802.11n, числа одновременно подключенных к ней клиентских беспроводных адаптеров и других факторов.
Разница между скоростью подключения, которая отображается в Windows, и реальными показателями объясняется прежде всего большим объемом служебных данных, потерями сетевых пакетов в беспроводной среде и затратами на повторную передачу.

Чтобы получить более или менее достоверное значение реальной скорости передачи данных в беспроводной сети, можно использовать один из указанных ниже способов:

Запустите в Windows копирование большого файла и затем посчитайте скорость, с которой был передан этот файл, используя размер файла и время передачи (Windows 7 при длительном копировании в дополнительных сведениях окна рассчитывает достаточно достоверную скорость).

Обращаем ваше внимание на следующее:
В технических спецификациях устройств указывается скорость соединения в Мегабитах в секунду (Мбит/с), а в пользовательских программах (интернет-браузеры, менеджеры загрузки, p2p-клиенты) скорость передачи данных при скачивании файлов (скорость закачки) отображается в Килобайтах или Мегабайтах в секунду (КБ/с, Кбайт/с или МБ/с, Мбайт/с). Эти величины часто путают.
Для перевода Мегабайтов в Мегабиты, необходимо умножить значение в Мегабайтах на 8. Например, если интернет-браузер показывает скорость при скачивании файлов 4 Мбайт/с, то для перевода в Мегабиты нужно умножить это значение на 8: 4 Мбайт/с * 8 = 32 Мбит/с.
Для перевода из Мегабит в Мегабайты необходимо разделить значение в Мегабитах на 8.

Но вернемся к скорости подключения по Wi-Fi.

В реальных условиях пропускная способность и площадь покрытия беспроводной сети зависят от помех, создаваемых другими устройствами, наличия препятствий и прочих факторов. Рекомендуем вам ознакомиться со статьей «Что влияет на работу беспроводных сетей Wi-Fi? Что может являться источником помех и каковы их возможные причины?»

Как мы писали выше, в операционной системе Windows, а также в утилитах, поставляемых вместе с беспроводным адаптером, при подключении отображается не реальная скорость передачи данных, а теоретическая скорость. Реальная скорость передачи данных оказывается примерно в 2-3 раза ниже, чем та, которая указана в спецификациях к устройству.
Дело в том, что в каждый момент времени точка доступа (роутер с активной точкой доступа) работает только с одним клиентским Wi-Fi-адаптером из всей Wi-Fi-сети. Передача данных происходит в полудуплексном режиме, т.е. по очереди - от точки доступа к клиентскому адаптеру, затем наоборот и так далее. Одновременный, параллельный процесс передачи данных (дуплекс) в технологии Wi-Fi невозможен.
Если в Wi-Fi-сети два клиента, то точке доступа нужно будет коммутировать в два раза чаще, чем если бы клиент был один, т.к. в технологии Wi-Fi используется полудуплексная передача данных. Соответственно, реальная скорость передачи данных между двумя адаптерами будет в два раза ниже, чем максимальная реальная скорость для одного клиента (речь идет о передаче данных от одного компьютера другому через точку доступа по Wi-Fi-соединению).

В зависимости от удаленности клиента Wi-Fi-сети от точки доступа или от наличия различных помех и препятствий будет изменяться теоретическая и, как следствие, реальная скорость передачи данных.

Стандарты мобильной связи

Совместно с беспроводными адаптерами точка доступа изменяет параметры сигнала в зависимости от условий в радиоэфире (расстояние, наличие препятствий и помех, зашумленности радиоэфира и прочих факторов).

Приведем пример. Скорость передачи между двумя ноутбуками, соединенными напрямую по Wi-Fi составляет ~10 Мбайт/с (один из адаптеров работает в режиме точки доступа, а другой в режиме клиента), а скорость передачи данных между теми же ноутбуками, но подключенными через роутер, составляет ~4 Мбайт/с. Так и должно быть. Скорость между двумя устройствами, подключенными через точку доступа по Wi-Fi, всегда будет как минимум в 2 раза меньше, чем скорость между теми же устройствами, подключенными друг к другу напрямую, т.к. полоса частот одна и адаптеры смогут общаться с точкой доступа только поочередно.

Рассмотрим другой пример, когда беспроводная Wi-Fi-сеть создана в роутере с поддержкой стандарта IEEE 802.11n с возможной теоретической максимальной скоростью до 150 Мбит/с. К роутеру подключен ноутбук с Wi-Fi-адаптером стандарта IEEE 802.11n (300 Мбит/с) и стационарный компьютер с Wi-Fi-адаптером стандарта IEEE 802.11g (54 Мбит/с).
В данном примере вся сеть имеет максимальную теоретическую скорость 150 Мбит/с, т.к. она построена на роутере с точкой доступа стандарта IEEE 802.11n 150 Мбит/с. Максимальная реальная скорость Wi-Fi не превысит 50 Мбит/с. Так как все стандарты Wi-Fi, работающие на одном частотном диапазоне, обратно совместимы друг с другом, то к такой сети можно подключиться при помощи Wi-Fi-адаптера стандарта IEEE 802.11g, 54 Мбит/с. При этом максимальная реальная скорость не превысит 20 Мбит/с.

Как увеличить скорость Интернета по WiFi на роутере

Что делать если Вас не устраивает низкая скорость Интернета через Wi-Fi сеть роутера? Как её увеличить и ускорить роутер?

Для начала подключите свой ноутбук к нему через кабель и проверьте скорость. Возможно что Ваш маршрутизатор ни в чем не виноват и причина тормозов находится на стороне провайдера.
А вот если через кабель все отлично, а по Вай-Фай тормозит — тогда стоит попробовать его немного «подкрутить» по параметрам и тем самым ускорить беспроводную сеть.

Используем самый быстрый стандарт WiFi

Первое, на что надо обратить внимание — это использование только высокоскоростных стандартов Wi-Fi. Для обычного диапазона 2.4 ГГц это 802.11N , а для 5 ГГц — 802.11AC .

Настраивается это обычно в базовых параметрах модуля Вай-Фай на роутере, пункт называется Беспроводной режим . Единственная оговорка — думаю, Вы должны понимать, что Ваше беспроводной адаптер на компьютере, ноутбуке или телефоне тоже должен поддерживать выставленный быстрый стандарт.

Ширина канала роутера

Второй параметр, позволяющий увеличить скорость WiFi на роутере — это ширина радио-канала. Чтобы Интернет работал быстрее, выставьте значение 40 МГц для диапазона 2.4 ГГц:

Для диапазона 5 ГГц нужно использовать либо 40 МГц (для 802.11N), либо 80 МГц (для 802.11AC).

Обычно после этого прирост скорости становится ощутимым.

Замечание: Ставить максимальное значение ширины канала роутера можно только если у Вас отличное качество сигнала. Иначе можно получить обратный эффект — нестабильное соединение и падение пропускной способности канала.

Непересекающиеся каналы WiFi

В обычном диапазоне 2.4 ГГц значительное влияние может оказывать номер используемого радиоканала. Непересекающимися каналы в диапазоне 2,4 ГГц — это 1, 6 и 11, а значит скорость Вай-Фай сети роутера при их использовании будет выше.

На частотах в 5,0 ГГц доступно 24 непересекающихся канала, поэтому данный диапазон более предпочтителен. Это особенности работы радио-передатчиков и ничего здесь не поделать.

Включаем режим WMM

В беспроводных сетях есть своя технология обеспечения качества сервиса или, как она более правильно называется — приоритизации трафика. Называется она Wireless Multimedia или сокращенно WMM .

Её использование является обязательным если Вы хотите выжать по максимуму скорость Вай-Фай на роутере при использовании стандарта 802.11N. Включается эта опция в расширенных или дополнительных параметрах радиомодуля.

Мощность WiFi-сигнала роутера

Мощность передатчика маршрутизатора или точки доступа так же способны оказывать значительное влияние на скорость Интернета по Wi-Fi. Опять же технология беспроводной связи такова, что наибольшая скорость достигается при наибольшей плотности. А чем выше мощность передатчика роутера, тем плотность ниже, а значит падает и скорость. Именно из-за этого пользователям не советуют приближаться к точке доступа ближе чем на 1,5 метра. В противном случае качество работы сети наоборот падает и передача данных начинает тормозить.

Введение в сети передачи данных

Поэтому, если Вы недовольны скоростью своего роутера — попробуйте снизить мощность передатчика до 75%, а то и до 50%.

Используйте быструю и безопасную защиту

Использование устаревших стандартов шифрования беспроводной сети в современных условиях не только является брешью в безопасности, но ещё и причиной появления проблемы со скоростью Вай-Фая.

Дело в том, что стандарты WEP и WPA безнадежно устарели. Кроме того, что они взламываются за несколько минут простыми школьниками, так они ещё имеют и ограничения по передаче данных. Так, используя простой WPA, разогнаться выше 54 мегабит в секунду Вам не удастся даже на мощном современном оборудовании. Именно поэтому обязательно используйте только WPA2 с шифрованием AES тогда у Вас не будет тормозить Wi-Fi.

Перепрошивка Вай-Фай роутера

Ну и ещё один фактор, позволяющий в некоторых случаях в несколько раз ускорить Интернет по Wi-Fi — это перепрошивка роутера. Та микропрограмма, которая идёт на устройстве с завода очень часто оказывается сырой и с ошибками. А иногда встречались случаи, когда ПО было вообще неработоспосбным. Поможет только перепрошивка роутера. Например, на роутерах ASUS неоднократно встречался с тем, что скорость обмена радиомодуля с проводными интерфейсами (этот параметр называется скорость коммутации ) на новых прошивках значительно выше, чем на старых.

Так же встречаются случаи, когда реально увеличить скорость Интернета по WiFi на роутере получается только с помощью альтернативных прошивок.

Заводское программное обеспечение при этом проблему с тормозами девайса решить не может.

Перепрошивка роутера — дело относительно простое. На многих современных моделях есть уже опция автообновления ПО. Для того, чтобы выполнить перепрошивку вручную, сначала надо скачать файл микропрограммы с сайта производителя. Затем в меню настроек аппарата заходим в системные инструменты и в разделе «Обновление ПО» указываем путь к файлу прошивки.