Биометрические системы безопасности и системы аутентификации. Технологии биометрической идентификации

Обычно при классификации биометрических технологий выделяют две группы систем по типу используемых биометрических параметров:

  • Первая группа систем использует статические биометрические параметры: отпечатки пальцев, геометрия руки, сетчатка глаза и т. п.
  • Вторая группа систем использует для идентификации динамические параметры: динамика воспроизведения подписи или рукописного ключевого слова, голос и т. п.

Увеличившийся в последнее время интерес к данной тематике в мире принято связывать с угрозами активизировавшегося международного терроризма . Многие государства в ближайшей перспективе планируют ввести в обращение паспорта с биометрическими данными .

История

В июне 2005 было заявлено, что к концу года в России будет утверждена форма нового заграничного паспорта. А в он будет введён в массовое обращение. Предположительно будет включать фотографию, сделанную методом лазерной гравировки и отпечатки двух пальцев.

Схема работы

Все биометрические системы работают практически по одинаковой схеме. Во-первых, система запоминает образец биометрической характеристики (это и называется процессом записи). Во время записи некоторые биометрические системы могут попросить сделать несколько образцов для того, чтобы составить наиболее точное изображение биометрической характеристики. Затем полученная информация обрабатывается и преобразовывается в математический код.

Кроме того, система может попросить произвести ещё некоторые действия для того, чтобы «приписать» биометрический образец к определённому человеку. Например, персональный идентификационный номер (PIN) прикрепляется к определённому образцу, либо смарт-карта, содержащая образец, вставляется в считывающее устройство. В таком случае снова делается образец биометрической характеристики и сравнивается с представленным образцом.

Идентификация по любой биометрической системе проходит четыре стадии :

  • Запись - физический или поведенческий образец запоминается системой;
  • Выделение - уникальная информация выносится из образца и составляется биометрический образец;
  • Сравнение - сохранённый образец сравнивается с представленным;
  • Совпадение/несовпадение - система решает, совпадают ли биометрические образцы, и выносит решение.

Подавляющее большинство людей считают, что в памяти компьютера хранится образец отпечатка пальца, голоса человека или картинка радужной оболочки его глаза. Но на самом деле в большинстве современных систем это не так. В специальной базе данных хранится цифровой код длиной до 1000 бит, который ассоциируется с конкретным человеком, имеющим право доступа. Сканер или любое другое устройство, используемое в системе, считывает определённый биологический параметр человека. Далее он обрабатывает полученное изображение или звук, преобразовывая их в цифровой код. Именно этот ключ и сравнивается с содержимым специальной базы данных для идентификации личности.

Параметры биометрических систем

Вероятность возникновения ошибок FAR/FRR, то есть коэффициентов ложного пропуска (False Acceptance Rate - система предоставляет доступ незарегистрированному пользователю) и ложного отказа в доступе (False Rejection Rate - доступ запрещён зарегистрированному в системе человеку). Необходимо учитывать взаимосвязь этих показателей: искусственно снижая уровень «требовательности» системы (FAR), мы, как правило, уменьшаем процент ошибок FRR, и наоборот.

На сегодняшний день все биометрические технологии являются вероятностными, ни одна из них не способна гарантировать полное отсутствие ошибок FAR/FRR, и нередко данное обстоятельство служит основой для не слишком корректной критики биометрии .

Практическое применение

Биометрические технологии активно применяются во многих областях, связанных с обеспечением безопасности доступа к информации и материальным объектам, а также в задачах уникальной идентификации личности.

Применения биометрических технологий разнообразны: доступ к рабочим местам и сетевым ресурсам, защита информации, обеспечение доступа к определённым ресурсам и безопасность. Ведение электронного бизнеса и электронных правительственных дел возможно только после соблюдения определённых процедур по идентификации личности. Биометрические технологии используются в области безопасности банковских обращений, инвестирования и других финансовых перемещений, а также розничной торговле, охране правопорядка, вопросах охраны здоровья, а также в сфере социальных услуг. Биометрические технологии в скором будущем будут играть главную роль в вопросах персональной идентификации во многих сферах. Применяемая отдельно или используемая совместно со смарт-картами, ключами и подписями, биометрия скоро станет применяться во всех сферах экономики и частной жизни .

Ключевые термины

Радужная оболочка глаза

Технология распознавания радужной оболочки глаза была разработана для того, чтобы свести на нет навязчивость сканирования сетчатки глаза, при котором используются инфракрасные лучи или яркий свет. Учёные также провели ряд исследований, которые показали, что сетчатка глаза человека может меняться со временем, в то время как радужная оболочка глаза остается неизменной. И самое главное, что невозможно найти два абсолютно идентичных рисунка радужной оболочки глаза, даже у близнецов.

Для получения индивидуальной записи о радужной оболочке глаза черно-белая камера делает 30 записей в секунду. Еле различимый свет освещает радужную оболочку, и это позволяет видеокамере сфокусироваться на радужке. Одна из записей затем оцифровывается и сохраняется в базе данных зарегистрированных пользователей. Вся процедура занимает несколько секунд, и она может быть полностью компьютеризирована при помощи голосовых указаний и автофокусировки.

В аэропортах, например, имя пассажира и номер рейса сопоставляются с изображением радужной оболочки, никакие другие данные не требуются. Размер созданного файла, 512 байт с разрешением 640 х 480, позволяет сохранить большое количество таких файлов на жестком диске компьютера.

Очки и контактные линзы, даже цветные, никак не повлияют на процесс получения изображения. Также нужно отметить, что произведенные операции на глазах, удаление катаракты или вживление имплантатов роговицы не изменяют характеристики радужной оболочки, её невозможно изменить или модифицировать. Слепой человек также может быть идентифицирован при помощи радужной оболочки глаза. Пока у глаза есть радужная оболочка, её хозяина можно идентифицировать.

Камера может быть установлена на расстоянии от 10 см до 1 метра, в зависимости от сканирующего оборудования. Термин «сканирование» может быть обманчивым, так как в процессе получения изображения проходит не сканирование, а простое фотографирование.

Радужная оболочка по текстуре напоминает сеть с большим количеством окружающих кругов и рисунков, которые могут быть измерены компьютером. Программа сканирования радужной оболочки глаза использует около 260 точек привязки для создания образца. Для сравнения, лучшие системы идентификации по отпечаткам пальцев используют 60-70 точек.

Стоимость всегда была самым большим сдерживающим моментом перед внедрением технологии, но сейчас системы идентификации по радужной оболочке становятся более доступными для различных компаний. Сторонники технологии заявляют о том, что распознавание радужной оболочки глаза очень скоро станет общепринятой технологией идентификации в различных областях.

Методы

Ранее в биометрии имел применение рисунок кровеносных сосудов на сетчатке глаза. В последнее время этот метод распознавания не применяется, так как, кроме биометрического признака, несёт в себе информацию о здоровье человека.

Форма кисти руки

Проблема технологии: даже без учёта возможности ампутации , такое заболевание, как артрит , может сильно помешать применению сканеров.

Голос

Голосовая биометрия, позволяющая измерять голос каждого человека, незаменима при удаленном обслуживании клиентов, когда основным средством взаимодействия является голос, в первую очередь, в автоматических голосовых меню и контакт-центрах.

Традиционные способы аутентификации клиента при удаленном обслуживании проверяют знания клиента (для этого клиента просят ввести какой-то пароль или ответить на вопросы безопасности - адрес, номер счета, девичью фамилию матери и пр.) Как показывают современные исследования в области безопасности, злоумышленники относительно легко могут добыть персональные данные практически любого человека и таким образом получить доступ, например, к его банковскому счету. Голосовая биометрия решает эту проблему, позволяя при удаленном телефонном обслуживании проверят действительно личность клиента, а не его знания. При использовании голосовой биометрии клиенту при звонке в IVR или в контакт-центр достаточно произнести парольную фразу или просто поговорить с оператором (рассказать о цели звонка) - голос звонящего будет автоматически проверен - действительно ли это голос принадлежит тому, за кого он себя выдает?

  • не требуется специальных сканеров - достаточно обычного микрофона в телефоне или диктофоне
  • не предъявляется специальных требований к устройствам - может быть использован любой диктофон (аналоговый или цифровой), мобильный или стационарный телефон (хоть 80-х годов выпуска)
  • просто - не требуется специальных умений
  1. Текстонезависимая - определение личности человека осуществляется по свободной речи, не требуется произнесения каких-то специальных слов и выражений. Например, человек может просто прочитать отрывок из стихотворения или обсудить с оператором контакт-центра цель своего звонка.
  2. Текстозависимая - для определения личности человек должен произнести строго определенную фразу. При этом данный тип голосовой биометрии делится на два:
    • Текстозависимая аутентификация по статической парольной фразе - для проверки личности необходимо произнести ту же фразу, которая произносилась и при регистрации голоса данного человека в системе.
    • Текстозависимая аутентификация по динамической парольной фразе - для проверки личности человека предлагается произнести фразу, состоящую из набора слов, произнесенных данным человеком при регистрации голоса в системе. Преимущество динамической парольной фразы от статической состоит в том, что каждый раз фраза меняется, что затрудняет мошенничество с использованием записи голоса человека (например, на диктофон).

Проблема технологии

Некоторые люди не могут произносить звуки, голос может меняться в связи с заболеванием и с возрастом. Кроме того, на точность аутентификации влияет шумовая обстановка вокруг человека (шумы, реверберация).

ZlodeiBaal 11 августа 2011 в 21:54

Современные биометрические методы идентификации

  • Информационная безопасность

В последнее время на Хабре появляется множество статей, посвящённых Гугловским системам идентификации по лицам. Если честно, то от многих из них так и несёт журналистикой и мягко говоря некомпетентностью. И захотелось мне написать хорошую статью по биометрии, оно же мне не в первой! Пара неплохих статей по биометрии на Хабре есть - но они достаточно короткие и неполные. Тут я попробую вкратце обрисовать общие принципы биометрической идентификации и современные достижения человечества в этом вопросе. В том числе и в идентификации по лицам.

У статьи есть , которое, по-сути, является её приквэлом.

В качестве основы для статьи будет использована совместная с коллегой публикация в журнале (БДИ, 2009), переработанная под современные реалии. Коллеги пока Хабре нет, но публикацию переработанной статьи тут он поддержал. На момент публикации статья являлась кратким обзором современного рынка биометрических технологий, который мы проводили для себя перед тем как выдвинуть свой продукт. Оценочные суждения о применимости, выдвинутые во второй части статьи основаны на мнениях людей, использовавших и внедрявших продукты, а так же на мнениях людей, занимающихся производством биометрических систем в России и Европе.

Общая информация

Начнём с азов. В 95% случаев биометрия по своей сути - это математическая статистика. А матстат это точная наука, алгоритмы из которой используются везде: и в радарах и в байесовских системах. В качестве двух основных характеристик любой биометрической системы можно принять ошибки первого и второго рода). В теории радиолокации их обычно называют «ложная тревога» или «пропуск цели», а в биометрии наиболее устоявшиеся понятия - FAR (False Acceptance Rate) и FRR(False Rejection Rate). Первое число характеризует вероятность ложного совпадения биометрических характеристик двух людей. Второе – вероятность отказа доступа человеку, имеющего допуск. Система тем лучше, чем меньше значение FRR при одинаковых значениях FAR. Иногда используется и сравнительная характеристика EER, определяющая точку в которой графики FRR и FAR пересекаются. Но она далеко не всегда репрезентативна. Подробнее можно посмотреть, например, .
Можно отметить следующее: если в характеристиках системы не даны FAR и FRR по открытым биометрическим базам - то что бы производители не заявляли о её характеристиках, эта система скорее всего недееспособна или сильно слабее конкурентов .
Но не только FAR и FRR определяют качество биометрической системы. Если бы это было только так, то лидирующей технологией было бы распознавание людей по ДНК, для которой FAR и FRR стремятся к нулю. Но ведь очевидно, что эта технология не применима на сегодняшнем этапе развития человечества! Нами было выработано несколько эмпирических характеристик, позволяющих оценить качество системы. «Устойчивость к подделке» – это эмпирическая характеристика, обобщающая то, насколько легко обмануть биометрический идентификатор. «Устойчивость к окружающей среде» – характеристика, эмпирически оценивающая устойчивость работы системы при различных внешних условиях, таких как изменение освещения или температуры помещения. «Простота использования» показывает насколько сложно воспользоваться биометрическим сканером, возможна ли идентификация «на ходу». Важной характеристикой является «Скорость работы», и «Стоимость системы». Не стоит забывать и то, что биометрическая характеристика человека может изменяться со временем, так что если она неустойчива– это существенный минус.
Обилие биометрических методов поражает. Основными методами, использующими статические биометрические характеристики человека, являются идентификация по папиллярному рисунку на пальцах, радужной оболочке, геометрии лица, сетчатке глаза, рисунку вен руки, геометрии рук. Также существует семейство методов, использующих динамические характеристики: идентификация по голосу, динамике рукописного подчерка, сердечному ритму, походке. Ниже представлено распределение биометрического рынка пару лет назад. В каждом втором источнике эти данные колеблются на 15-20 процентов, так что это всего лишь оценочное представление. Так же тут под понятием «геометрия руки» скрываются два разных метода о которых будет рассказано ниже.


В статье мы будем рассматривать только те характеристики, которые применимы в системах контроля и управления доступом (СКУД) или в близких им задачах. В силу своего превосходства это в первую очередь именно статические характеристики. Из динамических характеристик на сегодняшний момент только распознавание по голосу имеет хоть какую-то статистическую значимость(сравнимую с худьшими статическими алгоритмами FAR~0.1%, FRR~6%), но лишь в идеальных условиях.
Чтобы ощутить вероятности FAR и FRR, можно оценить, как часто будут возникать ложные совпадения, если установить систему идентификации на проходной организации с численностью персонала N человек. Вероятность ложного совпадения полученного сканером отпечатка пальца для базы данных из N отпечатков равна FAR∙N. И каждый день через пункт контроля доступа проходит тоже порядка N человек. Тогда вероятность ошибки за рабочий день FAR∙(N∙N). Конечно, в зависимости от целей системы идентификации вероятность ошибки за единицу времени может сильно варьироваться, но если принять допустимым одну ошибку в течение рабочего дня, то:
(1)
Тогда получим, что стабильная работа системы идентификации при FAR=0.1% =0.001 возможна при численности персонала N≈30.

Биометрические сканеры

На сегодняшний день понятие «биометрический алгоритм» и «биометрический сканер» не обязательно взаимосвязаны. Компания может выпускать эти элементы по одиночке, а может совместно. Наибольшая дифференциация производителей сканеров и производителей софта достигнута на рынке биометрии папиллярного узора пальцев. Наименьшая на рынке сканеров 3D лица. По сути уровень дифференциации во многом отображает развитость и насыщенность рынка. Чем больше выбора - тем более тематика отработана и доведена до совершенства. Различные сканеры имеют различный набор способностей. В основном это набор тестов для проверки подделан объект биометрии или нет. Для сканеров пальцев это может быть проверка рельефности или проверка температуры, для сканеров глаза это может быть проверка аккомодации зрачка, для сканеров лица - движение лица.
Сканеры очень сильно влияют на полученную статистику FAR и FRR. В некоторых случаях эти цифры могут изменяться в десятки раз, особенно в реальных условиях. Обычно характеристики алгоритма даются для некой «идеальной» базы, или просто для хорошо подходящей, где выброшены нерезкие и смазанные кадры. Лишь немногие алгоритмы честно указывают и базу и полную выдачу FAR/FRR по ней.

А теперь поподробнее про каждую из технологий

Отпечатки пальцев


Дактилоскопия (распознавание отпечатков пальцев) - наиболее разработанный на сегодняшний день биометрический метод идентификации личности. Катализатором развития метода послужило его широкое использование в криминалистике 20 века.
Каждый человек имеет уникальный папиллярный узор отпечатков пальцев, благодаря чему и возможна идентификация. Обычно алгоритмы используют характерные точки на отпечатках пальцев: окончание линии узора, разветвлении линии, одиночные точки. Дополнительно привлекается информация о морфологической структуре отпечатка пальца: относительное положение замкнутых линий папиллярного узора, «арочных» и спиральных линий. Особенности папиллярного узора преобразовываются в уникальный код, который сохраняет информативность изображения отпечатка. И именно «коды отпечатков пальцев» хранятся в базе данных, используемой для поиска и сравнения. Время перевода изображения отпечатка пальца в код и его идентификация обычно не превышает 1с, в зависимости от размера базы. Время, затраченное на поднесение руки – не учитывается.
В качестве источника данных по FAR и FRR использовались статистические данные VeriFinger SDK, полученные при помощи сканера отпечатков пальцев DP U.are.U. За последние 5-10 лет характеристики распознавания по пальцу не сильно шагнули вперёд, так что приведённые цифры неплохо показывают среднее значение современных алгоритмов. Сам алгоритм VeriFinger несколько лет выигрывал международное соревнование «International Fingerprint Verification Competition», где соревновались алгоритмы распознавания по пальцу.

Характерное значение FAR для метода распознавания отпечатков пальцев – 0.001%.
Из формулы (1) получим, что стабильная работа системы идентификации при FAR=0.001% возможна при численности персонала N≈300.
Преимущества метода. Высокая достоверность - статистические показатели метода лучше показателей способов идентификации по лицу, голосу, росписи. Низкая стоимость устройств, сканирующих изображение отпечатка пальца. Достаточно простая процедура сканирования отпечатка.
Недостатки: папиллярный узор отпечатка пальца очень легко повреждается мелкими царапинами, порезами. Люди, использовавшие сканеры на предприятиях с численностью персонала порядка нескольких сотен человек заявляют о высокой степени отказа сканирования. Многие из сканеров неадекватно относятся к сухой коже и не пропускают стариков. При общении на последней выставке MIPS начальник службы безопасности крупного химического предприятия рассказывал что их попытка ввести сканеры пальцев на предприятии (пробовались сканеры различных систем) провалилась - минимальное воздействие химических реактивов на пальцы сотрудников вызывало сбой систем безопасности сканеров - сканеры объявляли пальцы подделкой. Так же присутствует недостаточная защищённость от подделки изображения отпечатка, отчасти вызванная широким распространением метода. Конечно, не все сканеры можно обмануть методами из Разрушителей Легенд, но всё же. Для некоторых людей с «неподходящими» пальцами (особенности температуры тела, влажности) вероятность отказа в доступе может достигать 100%. Количество таких людей варьируется от долей процентов для дорогих сканеров до десяти процентов для недорогих.
Конечно, стоит отметить, что большое количество недостатков вызвано широкой распространённостью системы, но эти недостатки имеют место быть и проявляются они очень часто.
Ситуация на рынке
На данный момент системы распознавания по отпечаткам пальцев занимают более половины биометрического рынка. Множество российских и зарубежных компаний занимаются производством систем управления доступом, основанных на методе дактилоскопической идентификации. По причине того, что это направление является одним из самых давнишних, оно получило наибольшее распространение и является на сегодняшний день самым разработанным. Сканеры отпечатков пальцев прошли действительно длинный путь к улучшению. Современные системы оснащены различными датчиками (температуры, силы нажатия и т.п.), которые повышают степень защиты от подделок. С каждым днем системы становятся все более удобными и компактными. По сути, разработчики достигли уже некоего предела в данной области, и развивать метод дальше некуда. Кроме того, большинство компаний производят готовые системы, которые оснащены всем необходимым, включая программное обеспечение. Интеграторам в этой области просто нет необходимости собирать систему самостоятельно, так как это невыгодно и займет больше времени и сил, чем купить готовую и уже недорогую при этом систему, тем более выбор будет действительно широк.
Среди зарубежных компаний, занимающихся системами распознавания по отпечаткам пальцев, можно отметить SecuGen(USB-сканеры для PC, сканеры, которые можно устанавливать на предприятия или встраивать в замки, SDK и ПО для связи системы с компьютером); Bayometric Inc. (fingerprint scanners, TAA/Access control systems, fingerprint SDKs, embedded fingerprint modules); DigitalPersona, Inc. (USB-scanners, SDK). В России в данной области работают компании: BioLink (дактилоскопические сканеры, биометрические устройства управления доступом, ПО); Сонда (дактилоскопические сканеры, биометрические устройства управления доступом, SDK); СмартЛок (дактилоскопические сканеры и модули) и др.

Радужная оболочка



Радужная оболочка глаза является уникальной характеристикой человека. Рисунок радужки формируется на восьмом месяце внутриутробного развития, окончательно стабилизируется в возрасте около двух лет и практически не изменяется в течение жизни, кроме как в результате сильных травм или резких патологий. Метод является одним из наиболее точных среди биометрических методов.
Система идентификации личности по радужной оболочке логически делится на две части: устройство захвата изображения, его первичной обработки и передачи вычислителю и вычислитель, производящий сравнение изображения с изображениями в базе данных, передающий команду о допуске исполнительному устройству.
Время первичной обработки изображения в современных системах примерно 300-500мс, скорость сравнения полученного изображения с базой имеет уровень 50000-150000 сравнений в секунду на обычном ПК. Такая скорость сравнения не накладывает ограничений на применения метода в больших организациях при использовании в системах доступа. При использовании же специализированных вычислителей и алгоритмов оптимизации поиска становится даже возможным идентифицировать человека среди жителей целой страны.
Сразу могу ответить что я несколько предвзято и положительно отношусь к этому методу, так как именно на этой ниве мы запускали свой стартап. Небольшому самопиару будет посвящён абзац в конце.
Статистические характеристики метода
Характеристики FAR и FRR для радужной оболочки глаза наилучшие в классе современных биометрических систем (за исключением, возможно, метода распознавания по сетчатке глаза). В статье приведены характеристики библиотеки распознавания радужной оболочки нашего алгоритма - EyeR SDK, которые соответствуют проверенному по тем же базам алгоритму VeriEye. Использовались базы фирмы CASIA, полученные их сканером.

Характерное значение FAR – 0.00001%.
Согласно формуле (1) N≈3000 - численность персонала организации, при которой идентификация сотрудника происходит достаточно стабильно.
Здесь стоит отметить немаловажную особенность, отличающую систему распознавания по радужной оболочке от других систем. В случае использования камеры разрешения от 1.3МП можно захватывать два глаза на одном кадре. Так как вероятности FAR и FRR являются статистически независимыми вероятностями, то при распознавании по двум глазам значение FAR будет приблизительно равняться квадрату значения FAR для одного глаза. Например, для FAR 0,001% при использовании двух глаз вероятность ложного допуска будет равна 10-8 %, при FRR всего в два раза выше, чем соответствующее значение FRR для одного глаза при FAR=0.001%.
Преимущества и недостатки метода
Преимущества метода. Статистическая надёжность алгоритма. Захват изображения радужной оболочки можно производить на расстоянии от нескольких сантиметров до нескольких метров, при этом физический контакт человека с устройством не происходит. Радужная оболочка защищена от повреждений - а значит не будет изменяться во времени. Так же, возможно использовать высокое количество методов, защищающих от подделки.
Недостатки метода. Цена системы, основанной на радужной оболочке выше цены системы, основанной на распознавании пальца или на распознавании лица. Низкая доступность готовых решений. Любой интегратор, который сегодня придёт на российский рынок и скажет «дайте мне готовую систему» - скорее всего обломается. В большинстве своём продаются дорогие системы под ключ, устанавливаемые большими компаниями, такими как Iridian или LG.
Ситуация на рынке
На данный момент удельный вес технологий идентификации по радужной оболочке глаза на мировом биометрическом рынке составляет по разным подсчетам от 6 до 9 процентов (в то время как технологии распознавания по отпечаткам пальцев занимают свыше половины рынка). Следует отметить, что с самого начала развития данного метода, его укрепление на рынке замедляла высокая стоимость оборудования и компонентов, необходимых, чтобы собрать систему идентификации. Однако по мере развития цифровых технологий, себестоимость отдельной системы стала снижаться.
Лидером по разработке ПО в данной области является компания Iridian Technologies.
Вход на рынок большому количеству производителю был ограничен технической сложностью сканеров и, как следствие, их высокой стоимостью, а так же высокой ценой ПО из-за монопольного положения Iridian на рынке. Эти факторы позволяли развиться в области распознавания радужной оболочки только крупным компаниям, скорее всего уже занимающимся производством некоторых компонентов пригодных для системы идентификации (оптика высокого разрешения, миниатюрные камеры с инфракрасной подсветкой и т.п.). Примерами таких компаний могут быть LG Electronics, Panasonic, OKI. Они заключили договор с Iridian Technologies, и в результате совместной работы появились следующие системы идентификации: Iris Access 2200, BM-ET500, OKI IrisPass. В дальнейшем возникли усовершенствованные модели систем, благодаря техническим возможностям данных компаний самостоятельно развиваться в этой области. Следует сказать, что вышеперечисленные компании разработали также собственное ПО, но в итоге в готовой системе отдают предпочтение программному обеспечению Iridian Technologies.
На Российском рынке «преобладает» продукция зарубежных компаний. Хотя и ту можно купить с трудом. Длительное время фирма Папилон уверяла всех, что у них есть распознавание по радужной оболочке. Но даже представители РосАтома - их непосредственного закупщика, для которого они делали систему рассказывают, что это не соответствует действительности. В какой-то момент проявлялась ещё какая-то российская фирма, которая сделала сканеры радужной оболочки. Сейчас уже не вспомню названия. Алгоритм они у кого-то закупили, возможно у того же VeriEye. Сам сканер представлял собой систему 10-15 летней давности, отнюдь не бесконтактную.
В последний год на мировой рынок вышло пара новых производителей в связи с истечением первичного патента на распознавание человека по глазам. Наибольшего доверия из них, на мой взгляд, заслуживает AOptix. По крайней мере их превью и документация не вызывает подозрений. Второй компанией является SRI International. Даже на первый взгляд человеку, занимавшемуся системами распознавания радужки их ролики кажутся весьма лживыми. Хотя я не удивлюсь если в реальности они что-то умеют. И та и та система не показывает данных по FAR и FRR, а так же, судя по всему, не защищена от подделок.

Распознавание по лицу

Существует множество методов распознавания по геометрии лица. Все они основаны на том, что черты лица и форма черепа каждого человека индивидуальны. Эта область биометрии многим кажется привлекательной, потому что мы узнаем друг друга в первую очередь по лицу. Данная область делится на два направления: 2-D распознавание и 3-D распознавание. У каждого из них есть достоинства и недостатки, однако многое зависит еще и от области применения и требований, предъявленных к конкретному алгоритму.
В кратце расскажу про 2-d и перейду к одному из самых интересных на сегодня методов - 3-d.
2-D распознавание лица

2-D распознавание лица - один из самых статистически неэффективных методов биометрии. Появился он довольно давно и применялся, в основном, в криминалистике, что и способствовало его развитию. В последствие появились компьютерные интерпретации метода, в результате чего он стал более надёжным, но, безусловно, уступал и с каждым годом все больше уступает другим биометрическим методам идентификации личности. В настоящее время из-за плохих статистических показателей он применяется, в мультимодальной или, как ее еще называют, перекрестной биометрии, или в социальных сетях.
Статистические характеристики метода
Для FAR и FRR использованы данные для алгоритмов VeriLook. Опять же, для современных алгоритмов он имеет весьма обыкновенные характеристики. Иногда промелькивают алгоритмы с FRR 0.1% при аналогичном FAR, но базы по которым они получены ну уж очень сомнительны (вырезанный фон, одинаковое выражение лица, одинаковые причёска, освещение).

Характерное значение FAR – 0.1%.
Из формулы (1) получаем N≈30 - численность персонала организации, при которой идентификация сотрудника происходит достаточно стабильно.
Как видно, статистические показатели метода достаточно скромные: это нивелирует то преимущество метода, что можно проводить скрытую съемку лиц в людных местах. Забавно наблюдать, как пару раз в год финансируется очередной проект по обнаружению преступников через видеокамеры, установленные в людных местах. За последние десяток лет статистические характеристики алгоритма не улучшились, а количество таких проектов - выросло. Хотя, стоит отметить, что для ведения человека в толпе через множество камер алгоритм вполне годится.
Преимущества и недостатки метода
Преимущества метода. При 2-D распознавании, в отличие от большинства биометрических методов, не требуется дорогостоящее оборудование. При соответствующем оборудовании возможность распознавания на значительных расстояниях от камеры.
Недостатки. Низкая статистическая достоверность. Предъявляются требования к освещению (например, не удается регистрировать лица входящих с улицы людей в солнечный день). Для многих алгоритмов неприемлемость каких-либо внешних помех, как, например, очки, борода, некоторые элементы прически. Обязательно фронтальное изображение лица, с весьма небольшими отклонениями. Многие алгоритмы не учитывают возможные изменения мимики лица, то есть выражение должно быть нейтральным.
3-D распознавание лица

Реализация данного метода представляет собой довольно сложную задачу. Несмотря на это в настоящее время существует множество методов по 3-D распознаванию лица. Методы невозможно сравнить друг с другом, так как они используют различные сканеры и базы. далеко не все из них выдают FAR и FRR, используются абсолютно различные подходы.
Переходным от 2-d к 3-d методом является метод, реализующий накопления информации о лицу. Этот метод имеет лучшие характеристики, чем 2d метод, но так же как и он использует всего одну камеру. При занесении субъекта в базу субъект поворачивает голову и алгоритм соединяет изображение воедино, создавая 3d шаблон. А при распознавании используется несколько кадров видеопотока. Этот метод скорее относится к экспериментальным и реализации для систем СКУД я не видел ни разу.
Наиболее классическим методом является метод проецирования шаблона. Он состоит в том, что на объект (лицо) проецируется сетка. Далее камера делает снимки со скоростью десятки кадров в секунду, и полученные изображения обрабатываются специальной программой. Луч, падающий на искривленную поверхность, изгибается - чем больше кривизна поверхности, тем сильнее изгиб луча. Изначально при этом применялся источник видимого света, подаваемого через «жалюзи». Затем видимый свет был заменен на инфракрасный, который обладает рядом преимуществ. Обычно на первом этапе обработки отбрасываются изображения, на котором лица не видно вообще или присутствуют посторонние предметы, мешающие идентификации. По полученным снимкам восстанавливается 3-D модель лица, на которой выделяются и удаляются ненужные помехи (прическа, борода, усы и очки). Затем производится анализ модели - выделяются антропометрические особенности, которые в итоге и записываются в уникальный код, заносящийся в базу данных. Время захвата и обработки изображения составляет 1-2 секунды для лучших моделей.
Так же набирает популярность метод 3-d распознавания по изображению, получаемому с нескольких камер. Примером этого может являться фирма Vocord со своим 3d сканером. Этот метод даёт точность позиционирования, согласно уверениям разработчиков, выше метода проецирования шаблона. Но, пока не увижу FAR и FRR хотя бы по их собственной базе - не поверю!!! Но его разрабатывают уже года 3, а подвижки на выставках пока не видны.
Статистические показатели метода
Полные данные о FRR и FAR для алгоритмов этого класса на сайтах производителей открыто не приведены. Но для лучших моделей фирмы Bioscript (3D EnrolCam, 3D FastPass), работающих по методу проецирования шаблона при FAR = 0.0047% FRR составляет 0.103%.
Считается, что статистическая надежность метода сравнима с надежностью метода идентификации по отпечаткам пальцев.
Преимущества и недостатки метода
Преимущества метода. Отсутствие необходимости контактировать со сканирующим устройством. Низкая чувствительность к внешним факторам, как на самом человеке (появление очков, бороды, изменение прически), так и в его окружении (освещенность, поворот головы). Высокий уровень надежности, сравнимый с метом идентификации по отпечаткам пальцев.
Недостатки метода. Дороговизна оборудования. Имеющиеся в продаже комплексы превосходили по цене даже сканеры радужной оболочки. Изменения мимики лица и помехи на лице ухудшают статистическую надежность метода. Метод еще недостаточно хорошо разработан, особенно в сравнении с давно применяющейся дактилоскопией, что затрудняет его широкое применение.
Ситуация на рынке
Распознавание по геометрии лица причисляют к «трем большим биометрикам» вместе с распознаванием по отпечаткам пальцев и радужной оболочке. Надо сказать, что данный метод довольно распространен, и ему отдают пока предпочтение перед распознаванием по радужке глаза. Удельный вес технологий распознавания по геометрии лица в общем объеме мирового биометрического рынка можно оценивать в пределах 13-18 процентов. В России к данной технологии также проявляется больший интерес, чем, например, к идентификации по радужной оболочке. Как уже упоминалось ранее, существует множество алгоритмов 3-D распознавания. В большинстве своем компании предпочитают развивать готовые системы, включающие сканеры, сервера и ПО. Однако есть и те, кто предлагает потребителю только SDK. На сегодняшний день можно отметить следующие компании, занимающиеся развитием данной технологии: Geometrix, Inc. (3D сканеры лица, ПО), Genex Technologies (3D сканеры лица, ПО) в США, Cognitec Systems GmbH (SDK, специальный вычислители, 2D камеры) в Германии, Bioscrypt (3D сканеры лица, ПО) – дочернее предприятие американской компании L-1 Identity Solutions.
В России в данном направлении работают компании Artec Group (3D сканеры лица и ПО) – компания, головной офис которой находится в Калифорнии, а разработки и производство ведутся в Москве. Также несколько российских компаний владеют технологией 2D распознавания лица – Vocord, ITV и др.
В области распознавания 2D лица основным предметом разработки является программное обеспечение, т.к. обычные камеры отлично справляются с захвата изображения лица. Решение задачи распознавания по изображению лица в какой-то степени зашло в тупик – уже на протяжении нескольких лет практически не происходит улучшения статистических показателей алгоритмов. В этой области происходит планомерная «работа над ошибками».
3D распознавание лица сейчас является куда более привлекательной областью для разработчиков. В нём трудится множество коллективов и регулярно слышно о новых открытиях. Множество работ находятся в состоянии «вот-вот и выпустим». Но пока что на рынке лишь старые предложения, за последние годы выбор не изменился.
Одним из интересных моментов, над которыми я иногда задумываюсь и на которые, возможно ответит Хабр: а точности kinect хватит для создания такой системы? Проекты по вытаскиванию 3d модели человека через него вполне себе есть.

Распознавание по венам руки


Это новая технология в сфере биометрии, широкое применение её началось всего лет 5-10 назад. Инфракрасная камера делает снимки внешней или внутренней стороны руки. Рисунок вен формируется благодаря тому, что гемоглобин крови поглощает ИК излучение. В результате, степень отражения уменьшается, и вены видны на камере в виде черных линий. Специальная программа на основе полученных данных создает цифровую свертку. Не требуется контакта человека со сканирующим устройством.
Технология сравнима по надёжности с распознаванием по радужной оболочке глаза, в чём-то превосходя её, а в чём-то уступая.
Значение FRR и FAR приведено для сканера Palm Vein. Согласно данным разработчика при FAR 0,0008% FRR составляет 0.01%. Более точный график для нескольких значений не выдаёт ни одна фирма.
Преимущества и недостатки метода
Преимущества метода. Отсутствие необходимости контактировать со сканирующим устройством. Высокая достоверность - статистические показатели метода сравнимы с показаниями радужной оболочки. Скрытость характеристики: в отличие от всех вышеприведённых - эту характеристику очень затруднительно получить от человека «на улице», например сфотографировав его фотоаппаратом.
Недостатки метода. Недопустима засветка сканера солнечными лучами и лучами галогеновых ламп. Некоторые возрастные заболевания, например артрит – сильно ухудшают FAR и FRR. Метод менее изучен в сравнении с другими статическими методами биометрии.
Ситуация на рынке
Распознавание по рисунку вен руки является довольно новой технологией, и в связи с этим ее удельный вес на мировом рынке невелик и составляет около 3%. Однако к данному методу проявляется все больший интерес. Дело в том, что, являясь довольно точным, этот метод не требует столь дорогого оборудования, как, например, методы распознавания по геометрии лица или радужной оболочке. Сейчас многие компании ведут разработки в данной сфере. Так, например, по заказу английской компании TDSi было разработано ПО для биометрического считывателя вен ладони PalmVein, представленного компанией Fujitsu. Сам сканер был разработан компанией Fujitsu в первую очередь для борьбы с финансовыми махинациями в Японии.
Также в сфере идентификации по рисунку вен работают следующие компании Veid Pte. Ltd. (scanner, software), Hitachi VeinID (scanners)
В России компаний, занимающихся данной технологией, мне не известно.

Сетчатка глаза


До недавнего времени считалось, что самый надёжный метод биометрической идентификации и аутентификации личности - это метод, основанный на сканировании сетчатки глаза. Он содержит в себе лучшие черты идентификации по радужной оболочке и по венам руки. Сканер считывает рисунок капилляров на поверхности сетчатки глаза. Сетчатка имеет неподвижную структуру, неизменную по времени, кроме как в результате болезни, например, катаракты.
Сканирование сетчатки происходит с использованием инфракрасного света низкой интенсивности, направленного через зрачок к кровеносным сосудам на задней стенке глаза. Сканеры сетчатки глаза получили широкое распространение в системах контроля доступа на особо секретные объекты, так как у них один из самых низких процентов отказа в доступе зарегистрированных пользователей и практически не бывает ошибочного разрешения доступа.
К сожалению, целый ряд трудностей возникает при использовании этого метода биометрии. Сканером тут является весьма сложная оптическая система, а человек должен значительное время не двигаться, пока система наводится, что вызывает неприятные ощущения.
По данным компании EyeDentify для сканера ICAM2001 при FAR=0,001% значение FRR составляет 0,4%.
Преимущества и недостатки метода
Преимущества. Высокий уровень статистической надёжности. Из-за низкой распространенности систем мала вероятность разработки способа их «обмана».
Недостатки. Сложная при использовании система с высоким временем обработки. Высокая стоимость системы. Отсутствие широкого рынка предложение и как следствие недостаточная интенсивность развития метода.

Геометрия рук


Этот метод, достаточно распространённы ещё лет 10 назад и произошедший из криминалистики в последние годы идёт на убыль. Он основан на получении геометрических характеристик рук: длин пальцев, ширины ладони и.т.д. Этот метод, как и сетчатка глаза - умирающий, а так как у него куда более низкие характеристики, то даже не будем вводить его боле полного описания.
Иногда считается что в системах распознавания по венам применяют геометрические методы распознавания. Но в продаже мы такого явно заявленного ни разу не видели. Да и к тому же часто при распознавании по венам делается снимок только ладони, тогда как при распознавании по геометрии делается снимок пальцев.

Немного самопиара

В своё время мы разработали неплохой алгоритм распознавания по глазам. Но на тот момент такая высокотехнологичная штука в этой стране была не нужна, а в буржуйстан (куда нас пригласили после первой же статьи) - ехать не хотелось. Но внезапно, спустя года полтора таки нашлись инвесторы, которые захотели построить себе «биометрический портал» - систему, которая бы кушала 2 глаза и использовала цветовую составляющую радужной оболочки (на что у инвестора был мировой патент). Собственно теперь мы этим и занимаемся. Но это не статья про самопиар, это краткое лирическое отступление. Если кому интересно есть немного инфы, а когда-нибудь в будущем, когда мы выйдем на рынок (или не выйдем) я тут напишу пару слов о перипетиях биометрического проекта в России.

Выводы

Даже в классе статических систем биометрии имеется большой выбор систем. Какую из них выбрать? Всё зависит от требований к системе безопасности. Самыми статистически надежными и устойчивыми к подделке системами доступа являются системы допуска по радужной оболочке и по венам рук. На первые из них существует более широкий рынок предложений. Но и это не предел. Системы биометрической идентификации можно комбинировать, достигая астрономических точностей. Самыми дешёвыми и простыми в использовании, но обладающими хорошей статистикой, являются системы допуска по пальцам. Допуск по 2D лицу удобен и дёшев, но имеет ограниченную область применений из-за плохих статистических показателей.
Рассмотрим характеристики, которые будет иметь каждая из систем: устойчивость к подделке, устойчивость к окружающей среде, простота использования, стоимость, скорость, стабильность биометрического признака во времени. Расставим оценки от 1 до 10 в каждой графе. Чем ближе оценка к 10, тем лучше система в этом отношении. Принципы выбора оценок были описаны в самом начале статьи.


Также рассмотрим соотношение FAR и FRR для этих систем. Это соотношение определяет эффективность системы и широту её использования.


Стоит помнить, что для радужной оболочки можно увеличить точность системы практически квадратично, без потерь для времени, если усложнить систему, сделав её на два глаза. Для дактилоскопического метода - путём комбинирования нескольких пальцев, и распознаванию по венам, путём комбинирования двух рук, но такое улучшение возможно только при увеличении времени, затрачиваемого при работе с человеком.
Обобщив результаты для методов, можно сказать, что для средних и больших объектов, а так же для объектов с максимальным требованием в безопасности следует использовать радужную оболочку в качестве биометрического доступа и, возможно, распознавание по венам рук. Для объектов с количеством персонала до нескольких сотен человек оптимальным будет доступ по отпечаткам пальцев. Системы распознавания по 2D изображению лица весьма специфические. Они могут потребоваться в случаях, когда распознавание требует отсутствия физического контакта, но поставить систему контроля по радужной оболочке невозможно. Например, при необходимости идентификации человека без его участия, скрытой камерой, или камерой наружного обнаружения, но возможно это лишь при малом количестве субъектов в базе и небольшом потоке людей, снимаемых камерой.

Юному технику на заметку

У некоторых производителей, например у Neurotechnology на сайте доступны демо-версии методов биометрии, которые они выпускают, так что вполне можно подключить их и поиграться. Для тех же, кто решит покопаться в проблеме посерьёзнее, могу посоветовать единственную книжку которую я видел на русском - «Руководство по биометрии» Р.М. Болл, Дж.Х. Коннел, Ш. Панканти. Там есть много алгоритмов и их математических моделей. Не всё полно и не всё соответствует современности, но база неплохая и объемлющая.

P.S.

В этом опусе я не вдавался в проблему аутентификации, а только затрагивал идентификацию. В принципе из характеристики FAR/FRR и возможности подделки все выводы по вопросу аутентификации напрашиваются сами.

Теги:

  • биометрия
  • сканеры отпечатков пальцев
Добавить метки

Введение

1.Классификация и основные характеристики биометрических средств идентификации личности

2. Особенности реализации статических методов биометрического контроля

2.1 Идентификация по рисунку папиллярных линий

2.2 Идентификация по радужной оболочке глаз

2.3 Идентификация по капиллярам сетчатки глаз

2.4 Идентификация по геометрии и тепловому изображению лица

2.5 Идентификация но геометрии кисти руки

3. Особенности реализации динамических методов биометрического контроля

3.1 Идентификация по почерку и динамике подписи

3.3 Идентификация по ритму работы на клавиатуре

4. Биометрические технологии будущего

Заключение

Литература

Введение

Тема курсовой работы «Биометрические средства иденфикации личности».

Для идентификации личности современные электронные систем контроля и управления доступом (СКУД) используют устройства нескольких типов. Наиболее распространенными являются:

Кодонаборные устройства ПИН-кода (кнопочные клавиатуры);

Считыватели бесконтактных смарт-карт (интерфейс Виганда);

Считыватели проксимити-карт;

Считыватели ключа «тач-мемори»;

Считыватели штрих-кодов;

Биометрические считыватели.

В настоящее время самое широкое распространение получили всевозможные считыватели карт (проксимити, Виганда, с магнитной полосой и т. п). Они имеют свои неоспоримые преимущества и удобства в использовании, однако при этом в автоматизированном пункте доступа контролируется «проход карточки, а не человека». В то же время карточка может быть потеряна или украдена злоумышленниками. Все это снижает возможность использования СКУД, основанных исключительно на считывателях карт, в приложениях с высокими требованиями к уровню безопасности. Несравненно более высокий уровень безопасности обеспечивают всевозможные биометрические устройства контроля доступа, использующие в качестве идентифицирующего признака биометрические параметры человека (отпечаток пальца, геометрия руки, рисунок сетчатки глаза и т. п.), которые однозначно предоставляют доступ только определенному человеку - носителю кода (биометрических параметров). Но на сегодняшний день подобные устройства все еще остаются достаточно дорогими и сложными, и поэтому находят свое применение только в особо важных пунктах доступа. Считыватели штрих-кодов в настоящее время практически не устанавливаются, поскольку подделать пропуск чрезвычайно просто на принтере или на копировальном аппарате.

Цель работы рассмотреть принципы работы и использования биометрических средств иденфикации личности.

1. Классификация и основные характеристики биометрических средств идентификации личности

Достоинства биометрических идентификаторов на основе уникальных биологических, физиологических особенностей человека, однозначно удостоверяющих личность, привели к интенсивному развитию соответствующих средств. В биометрических идентификаторах используются статические методы, основанные на физиологических характеристиках человека, т. е. на уникальных характеристиках, данных ему от рождения (рисунки папиллярных линий пальцев, радужной оболочки глаз, капилляров сетчатки глаз, тепловое изображение лица, геометрия руки, ДНК), и динамические методы(почерк и динамика подписи, голос и особенности речи, ритм работы на клавиатуре). Предполагается использовать такие уникальные статические методы, как идентификация по подноггевому слою кожи, по объему указанных для сканирования пальцев, форме уха, запаху тела, и динамические методы -идентификация по движению губ при воспроизведении кодового слова, по динамике поворота ключа в дверном замке и т. д. Классификация современных биометрических средств идентификации показана на рис. 1.

Биометрические идентификаторы хорошо работают только тогда, когда оператор может проверить две вещи: во-первых, что биометрические данные получены от конкретного лица именно во время проверки, а во-вторых, что эти данные совпадают с образцом, хранящимся в картотеке. Биометрические характеристики являются уникальными идентификаторами, но вопрос их надежного хранения и защиты от перехвата по-прежнему остается открытым

Биометрические идентификаторы обеспечивают очень высокие показатели: вероятность несанкционированного доступа - 0,1 - 0,0001 %, вероятность ложного задержания - доли процентов, время идентификации - единицы секунд, но имеют более высокую стоимость по сравнению со средствами атрибутной идентификации. Качественные результаты сравнения различных биометрических технологий по точности идентификации и затратам указаны на рис. 2. Известны разработки СКУД, основанные на считывании и сравнении конфигураций сетки вен на запястье, образцов запаха, преобразованных в цифровой вид, анализе носящего уникальный характер акустического отклика среднего уха человека при облучении его специфическими акустическими импульсами и т. д.


Рис. 1. Классификация современных биометрических средств идентификации


Тенденция значительного улучшения характеристик биометрических идентификаторов и снижения их стоимости приведет к широкому применению биометрических идентификаторов в различных системах контроля и управления доступом. В настоящее время структура этого рынка представля-

Любая биометрическая технология применяется поэтапно:

Сканирование объекта;

Извлечение индивидуальной информации;

Формирование шаблона;

Сравнение текущего шаблона с базой данных.

Методика биометрической аутентификации заключается в следующем. Пользователь, обращаясь с запросом к СКУД на доступ, прежде всего, идентифицирует себя с помощью идентификационной карточки, пластикового ключа или личного идентификационного номера. Система по предъявленному пользователем идентификатору находит в своей памяти личный файл (эталон) пользователя, в котором вместе с номером хранятся данные его биометрии, предварительно зафиксированные во время процедуры регистрации пользователя. После этого пользователь предъявляет системе для считывания обусловленный носитель биометрических параметров. Сопоставив полученные и зарегистрированные данные, система принимает решение о предоставлении или запрещении доступа.




Рис. 2. Сравнение методов биометрической идентификации

Таким образом, наряду с измерителями биометрических характеристик СКУД должны быть оборудованы соответствующими считывателями идентификационных карточек или пластиковых ключей (или цифровой клавиатурой).

Основные биометрические средства защиты информации, предоставляемые сегодня российским рынком обеспечения безопасности, приведены в табл. 1, технические характеристики некоторых биометрических систем представлены в табл. 2.

Таблица 1. Современные биометрические средства защиты информации

Наименование Производитель Биопризнак Примечание
SACcat SAC Technologies Рисунок кожи пальца Приставка к компьютеру
TouchLock, TouchSafe, Identix Рисунок кожи СКУД объекта
TouchNet пальца
Eye Dentification Eyedentify Рисунок сетчатки СКУД объекта
System 7,5 глаза (моноблок)
Ibex 10 Eyedentify Рисунок сетчатки глаза СКУД объекта (порт, камера)
eriprint 2000 Biometric Identification Рисунок кожи пальца СКУД универсал
ID3D-R Handkey Recognition Systems Рисунок ладони руки СКУД универсал
HandKey Escape Рисунок ладони руки СКУД универсал
ICAM 2001 Eyedentify Рисунок сетчатки глаза СКУД универсал
Secure Touch Biometric Access Corp. Рисунок кожи пальца Приставка к компьютеру
BioMouse American Biometric Corp Рисунок кожи пальца Приставка к компьютеру
Fingerprint Identification Unit Sony Рисунок кожи пальца Приставка к компьютеру
Secure Keyboard Scanner National Registry Inc. Рисунок кожи пальца Приставка к компьютеру
Рубеж НПФ «Кристалл» Динамика подписи, спектр голоса Приставка к компьютеру
Дакточип Delsy Элсис, НПП Электрон (Россия), Опак (Белоруссия), Р&Р (Германия) Рисунок кожи пальца Приставка к компьютеру
BioLink U-Match Mouse,Мышь SFM- 2000A BioLink Technologies Рисунок кожи пальца Стандартная мышь со встроенным сканером отпечатка пальца
Биометрическая система защиты компьютерной информации Дакто ОАО «Черниговский завод радиоприборов» Биологически активные точки и папиллярные линии кожи Отдельный блок
Биометрическая система контроля Iris Access 3000 LG Electronics, Inc Рисунок радужной оболочки глаза Интеграция со считывателем карт

Говоря о точности автоматической аутентификации, принято выделять два типа ошибок Ошибки 1-го рода («ложная тревога») связаны с запрещением доступа законному пользователю. Ошибки 1-го рода («пропуск цели»)- предоставление доступа незаконному пользователю. Причина возникновения ошибок состоит в том, что при измерениях биометрических характеристик существует определенный разброс значений. В биометрии совершенно невероятно, чтобы образцы и вновь полученные характеристики давали полное совпадение. Это справедливо для всех биометрических характеристик, включая отпечатки пальцев, сканирование сетчатки глаза или опознание подписи. Например, пальцы руки не всегда могут быть помещены в одно и то же положение, под тем же самым углом или с тем же самым давлением. И так каждый раз при проверке.

Андрей Борзенко

Чтобы установить личность задержанного,
полицейскому было достаточно
просто заглянуть ему в глаза.
Из газет

По мере развития компьютерных сетей и расширения сфер автоматизации ценность информации неуклонно возрастает. Государственные секреты, наукоемкие ноу-хау, коммерческие, юридические и врачебные тайны все чаще доверяются компьютеру, который, как правило, подключен к локальным и корпоративным сетям. Популярность глобальной сети Интернет, с одной стороны, открывает огромные возможности для электронной коммерции, но, с другой стороны, создает потребность в более надежных средствах безопасности для защиты корпоративных данных от доступа извне. В настоящее время все больше компаний сталкиваются с необходимостью предотвратить несанкционированный доступ к своим системам и защитить транзакции в электронном бизнесе.

Практически до конца 90-х годов основным способом персонификации пользователя было указание его сетевого имени и пароля. Справедливости ради нужно отметить, что подобного подхода по-прежнему придерживаются во многих учреждениях и организациях. Опасности, связанные с использованием пароля, хорошо известны: пароли забывают, хранят в неподходящем месте, наконец, их могут просто украсть. Некоторые пользователи записывают пароль на бумаге и держат эти записи рядом со своими рабочими станциями. Как сообщают группы информационных технологий многих компаний, большая часть звонков в службу поддержки связана с забытыми или утратившими силу паролями.

Известно, что систему можно обмануть, представившись чужим именем. Для этого необходимо лишь знать некую идентифицирующую информацию, которой, с точки зрения системы безопасности, обладает один-единственный человек. Злоумышленник, выдав себя за сотрудника компании, получает в свое распоряжение все ресурсы, доступные данному пользователю в соответствии с его полномочиями и должностными обязанностями. Результатом могут стать различные противоправные действия, начиная от кражи информации и заканчивая выводом из строя всего информационного комплекса.

Разработчики традиционных устройств идентификации уже столкнулись с тем, что стандартные методы во многом устарели. Проблема, в частности, состоит в том, что общепринятое разделение методов контроля физического доступа и контроля доступа к информации более несостоятельно. Ведь для получения доступа к серверу иногда совсем не обязательно входить в помещение, где он стоит. Причиной тому - ставшая всеобъемлющей концепция распределенных вычислений, объединяющая и технологию клиент-сервер, и Интернет. Для решения этой проблемы требуются радикально новые методы, основанные на новой идеологии. Проведенные исследования показывают, что ущерб в случаях несанкционированного доступа к данным компаний может составлять миллионы долларов.

Есть ли выход из этой ситуации? Оказывается, есть, и уже давно. Просто для доступа к системе нужно применять такие методы идентификации, которые не работают в отрыве от их носителя. Этому требованию отвечают биометрические характеристики человеческого организма. Современные биометрические технологии позволяют идентифицировать личность по физиологическим и психологическим признакам. Кстати, биометрия известна человечеству очень давно - еще древние египтяне использовали идентификацию по росту.

Основы биометрической идентификации

Главная цель биометрической идентификации заключается в создании такой системы регистрации, которая крайне редко отказывала бы в доступе легитимным пользователям и в то же время полностью исключала несанкционированный вход в компьютерные хранилища информации. По сравнению с паролями и карточками такая система обеспечивает гораздо более надежную защиту: ведь собственное тело нельзя ни забыть, ни потерять. Биометрическое распознавание объекта основано на сравнении физиологических или психологических особенностей этого объекта с его характеристиками, хранящимися в базе данных системы. Подобный процесс постоянно происходит в мозгу человека, позволяя узнавать, например, своих близких и отличать их от незнакомых людей.

Биометрические технологии можно разделить на две большие категории - физиологические и психологические (поведенческие). В первом случае анализируются такие признаки, как черты лица, структура глаза (сетчатки или радужной оболочки), параметры пальцев (папиллярные линии, рельеф, длина суставов и т.д.), ладонь (ее отпечаток или топография), форма руки, рисунок вен на запястье или тепловая картина. Психологические характеристики - это голос человека, особенности его подписи, динамические параметры письма и особенности ввода текста с клавиатуры.

На выбор метода, наиболее подходящего в той или иной ситуации, влияет целый ряд факторов. Предлагаемые технологии отличаются по эффективности, причем их стоимость в большинстве случаев прямо пропорциональна уровню надежности. Так, применение специализированной аппаратуры иной раз повышает стоимость каждого рабочего места на тысячи долларов.

Физиологические особенности, например, папиллярный узор пальца, геометрия ладони или рисунок (модель) радужной оболочки глаза - это постоянные физические характеристики человека. Данный тип измерений (проверки) практически неизменен, так же, как и сами физиологические характеристики. Поведенческие же характеристики, например, подпись, голос или клавиатурный почерк, находятся под влиянием как управляемых действий, так и менее управляемых психологических факторов. Поскольку поведенческие характеристики могут изменяться с течением времени, зарегистрированный биометрический образец должен при каждом использовании обновляться. Биометрия, основанная на поведенческих характеристиках, дешевле и представляет меньшую угрозу для пользователей; зато идентификация личности по физиологическим чертам более точна и дает большую безопасность. В любом случае оба метода обеспечивают значительно более высокий уровень идентификации, чем пароли или карты.

Важно отметить, что все биометрические средства аутентификации в той или иной форме используют статистические свойства некоторых качеств индивида. Это означает, что результаты их применения носят вероятностный характер и будут изменяться от раза к разу. Кроме того, все подобные средства не застрахованы от ошибок аутентификации. Существует два рода ошибок: ложный отказ (не признали своего) и ложный допуск (пропустили чужого). Надо сказать, что тема эта в теории вероятностей хорошо изучена еще со времен развития радиолокации. Влияние ошибок на процесс аутентификации оценивается с помощью сравнения средних вероятностей соответственно ложного отказа и ложного допуска. Как показывает практика, эти две вероятности связаны обратной зависимостью, т.е. при попытке ужесточить контроль повышается вероятность не пустить в систему своего, и наоборот. Таким образом, в каждом случае необходимо искать некий компромисс. Тем не менее, даже по самым пессимистичным оценкам экспертов, биометрия выигрывает при всех сравнениях, поскольку она значительно надежнее, чем другие существующие методы аутентификации.

Кроме эффективности и цены, компаниям следует учитывать также реакцию служащих на биометрические средства. Идеальная система должна быть простой в применении, быстрой, ненавязчивой, удобной и приемлемой с социальной точки зрения. Однако ничего идеального в природе нет, и каждая из разработанных технологий лишь частично соответствует всему набору требований. Но даже самые неудобные и непопулярные средства (например, идентификация по сетчатке, которой пользователи всячески стараются избежать, защищая свои глаза) приносят нанимателю несомненную пользу: они демонстрируют должное внимание компании к вопросам безопасности.

Развитие биометрических устройств идет по нескольким направлениям, но общие для них черты - это непревзойденный на сегодня уровень безопасности, отсутствие традиционных недостатков парольных и карточных систем защиты и высокая надежность. Успехи биометрических технологий связаны пока главным образом с организациями, где они внедряются в приказном порядке, например, для контроля доступа в охраняемые зоны или идентификации лиц, привлекших внимание правоохранительных органов. Корпоративные пользователи, похоже, еще не осознали потенциальных возможностей биометрии в полной мере. Часто менеджеры компаний не рискуют развертывать у себя биометрические системы, опасаясь, что из-за возможных неточностей в измерениях пользователи будут получать отказы в доступе, на который у них есть права. Тем не менее новые технологии все активнее проникают на корпоративный рынок. Уже сегодня существуют десятки тысяч компьютеризованных мест, хранилищ, исследовательских лабораторий, банков крови, банкоматов, военных сооружений, доступ к которым контролируется устройствами, сканирующими уникальные физиологические или поведенческие характеристики индивидуума.

Методы аутентификации

Как известно, аутентификация подразумевает проверку подлинности субъекта, которым в принципе может быть не только человек, но и программный процесс. Вообще говоря, аутентификация индивидов возможна за счет предъявления информации, хранящейся в различной форме. Это может быть:

  • пароль, личный номер, криптографический ключ, сетевой адрес компьютера в сети;
  • смарт-карта, электронный ключ;
  • внешность, голос, рисунок радужной оболочки глаз, отпечатки пальцев и другие биометрические характеристики пользователя.

Аутентификация позволяет обоснованно и достоверно разграничить права доступа к информации, находящейся в общем пользовании. Однако, с другой стороны, возникает проблема обеспечения целостности и достоверности этой информации. Пользователь должен быть уверен, что получает доступ к информации из заслуживающего доверия источника и что данная информации не модифицировалась без соответствующих санкций.

Поиск совпадения "один к одному" (по одному атрибуту) называется верификацией. Этот способ отличается высокой скоростью и предъявляет минимальные требования к вычислительной мощности компьютера. А вот поиск "один ко многим" носит название идентификации. Реализовать подобный алгоритм обычно не только сложно, но и дорого. Сегодня на рынок выходят биометрические устройства, использующие для верификации и идентификации пользователей компьютеров такие индивидуальные характеристики человека, как отпечатки пальцев, черты лица, радужную оболочку и сетчатку глаза, форму ладони, особенности голоса, речи и подписи. На стадии тестирования и опытной эксплуатации находятся системы, позволяющие выполнять аутентификацию пользователей по тепловому полю лица, рисунку кровеносных сосудов руки, запаху тела, температуре кожи и даже по форме ушей.

Любая биометрическая система позволяет распознавать некий шаблон и устанавливать аутентичность конкретных физиологических или поведенческих характеристик пользователя. Логически биометрическую систему можно разделить на два модуля: модуль регистрации и модуль идентификации. Первый отвечает за то, чтобы обучить систему идентифицировать конкретного человека. На этапе регистрации биометрические датчики сканируют необходимые физиологические или поведенческие характеристики человека и создают их цифровое представление. Специальный модуль обрабатывает это представление с тем, чтобы выделить характерные особенности и сгенерировать более компактное и выразительное представление, называемое шаблоном. Для изображения лица такими характерными особенностями могут стать размер и относительное расположение глаз, носа и рта. Шаблон для каждого пользователя хранится в базе данных биометрической системы.

Модуль идентификации отвечает за распознавание человека. На этапе идентификации биометрический датчик снимает характеристики человека, которого нужно идентифицировать, и преобразует эти характеристики в тот же цифровой формат, в котором хранится шаблон. Полученный шаблон сравнивается с хранимым, чтобы определить, соответствуют ли эти шаблоны друг другу.

Например, в ОС Microsoft Windows для аутентификации пользователя требуется два объекта - имя пользователя и пароль. При использовании в процессе аутентификации отпечатков пальцев имя пользователя вводится для регистрации, а отпечаток пальца заменяет пароль (рис. 1). Эта технология использует имя пользователя в качестве указателя для получения учетной записи пользователя и проверки соответствия "один к одному" между шаблоном считанного при регистрации отпечатка и шаблоном, ранее сохраненным для данного имени пользователя. Во втором случае введенный при регистрации шаблон отпечатка пальца необходимо сопоставить со всем набором сохраненных шаблонов.

При выборе способа аутентификации имеет смысл учитывать несколько основных факторов:

  • ценность информации;
  • стоимость программно-аппаратного обеспечения аутентификации;
  • производительность системы;
  • отношение пользователей к применяемым методам аутентификации;
  • специфику (предназначение) защищаемого информационного комплекса.

Очевидно, что стоимость, а следовательно, качество и надежность средств аутентификации должны быть напрямую связаны с важностью информации. Кроме того, повышение производительности комплекса, как правило, также сопровождается его удорожанием.

Отпечатки пальцев

В последние годы процесс идентификации личности по отпечатку пальца обратил на себя внимание как биометрическая технология, которая, вполне вероятно, будет наиболее широко использоваться в будущем. По оценкам Gartner Group (http://www.gartnergroup.com), данная технология доминирует на корпоративном рынке и в ближайшее время конкуренцию ей может составить лишь технология опознавания по радужной оболочке глаза.

Правительственные и гражданские организации во всем мире уже давно используют отпечатки пальцев в качестве основного метода установления личности. Кроме того, отпечатки - это наиболее точная, дружественная к пользователю и экономичная биометрическая характеристика для применения в компьютерной системе идентификации. Данной технологией в США пользуются, например, отделы транспортных средств администраций ряда штатов, MasterCard, ФБР, Секретная служба, Агентство национальной безопасности, министерства финансов и обороны и т.д. Устраняя потребность в паролях для пользователей, технология распознавания отпечатков пальцев сокращает число обращений в службу поддержки и снижает расходы на сетевое администрирование.

Обычно системы распознавания отпечатков пальцев разделяют на два типа: для идентификации - AFIS (Automatic Fingerprint Identification Systems) и для верификации. В первом случае используются отпечатки всех десяти пальцев. Подобные системы находят широкое применение в судебных органах. Устройства верификации обычно оперируют с информацией об отпечатках одного, реже нескольких пальцев. Сканирующие устройства бывают, как правило, трех типов: оптические, ультразвуковые и на основе микрочипа.

Преимущества доступа по отпечатку пальца - простота использования, удобство и надежность. Известны два основополагающих алгоритма распознавания отпечатков пальцев: по отдельным деталям (характерным точкам) и по рельефу всей поверхности пальца. Соответственно в первом случае устройство регистрирует только некоторые участки, уникальные для конкретного отпечатка, и определяет их взаимное расположение. Во втором случае обрабатывается изображение всего отпечатка. В современных системах все чаще используется комбинация этих двух способов. Это позволяет избежать недостатков обоих и повысить достоверность идентификации. Единовременная регистрация отпечатка пальца человека на оптическом сканере занимает немного времени. Крошечная CCD-камера, выполненная в виде отдельного устройства или встроенная в клавиатуру, делает снимок отпечатка пальца. Затем с помощью специальных алгоритмов полученное изображение преобразуется в уникальный "шаблон" - карту микроточек отпечатка, которые определяются имеющимися в нем разрывами и пересечениями линий. Этот шаблон (а не сам отпечаток) затем шифруется и записывается в базу данных для аутентификации сетевых пользователей. В одном шаблоне хранится от нескольких десятков до сотен микроточек. При этом пользователи могут не беспокоиться о неприкосновенности своей частной жизни, поскольку сам отпечаток пальца не сохраняется и не может быть воссоздан по микроточкам.

Преимущество ультразвукового сканирования - возможность определения требуемых характеристик на грязных пальцах и даже через тонкие резиновые перчатки. Стоит отметить, что современные системы распознавания нельзя обмануть даже свежеотрубленными пальцами (микрочип измеряет физические параметры кожи). Разработкой подобных систем занимаются более 50 различных производителей.

Использование отпечатка пальца для идентификации личности - самый удобный из всех биометрических методов. Вероятность ошибки при идентификации пользователя намного меньше в сравнении с другими методами биометрии. Качество распознавания отпечатка и возможность его правильной обработки алгоритмом сильно зависят от состояния поверхности пальца и его положения относительно сканирующего элемента. Различные системы предъявляют разные требования к этим двум параметрам. Характер требований зависит, в частности, от применяемого алгоритма. К примеру, распознавание по характерным точкам дает сильный уровень шума при плохом состоянии поверхности пальца. Распознавание по всей поверхности лишено этого недостатка, но для него требуется очень точно размещать палец на сканирующем элементе. Устройство идентификации по отпечатку пальца (сканер, рис. 2) не требует много места и может быть вмонтировано в указательный манипулятор (мышь) или клавиатуру.

Геометрия лица

Идентификация человека по лицу в обычной жизни, без всяких сомнений, - самый распространенный способ распознавания. Что касается ее технической реализации, она представляет собой более сложную (с математической точки зрения) задачу, нежели распознавание отпечатков пальцев, и, кроме того, требует более дорогостоящей аппаратуры (нужна цифровая видео- или фотокамера и плата захвата видеоизображения). У этого метода есть один существенный плюс: для хранения данных об одном образце идентификационного шаблона требуется совсем немного памяти. А все потому, что, как выяснилось, человеческое лицо можно "разобрать" на относительно небольшое количество участков, неизменных у всех людей. Например, для вычисления уникального шаблона, соответствующего конкретному человеку, требуется всего от 12 до 40 характерных участков.

Обычно камера устанавливается на расстоянии в несколько десятков сантиметров от объекта. Получив изображение, система анализирует различные параметры лица (например, расстояние между глазами и носом). Большинство алгоритмов позволяет компенсировать наличие у исследуемого индивида очков, шляпы и бороды. Для этой цели обычно используется сканирование лица в инфракрасном диапазоне. Было бы наивно предполагать, что подобные системы дают очень точный результат. Несмотря на это, в ряде стран они довольно успешно используются для верификации кассиров и пользователей депозитных сейфов.

Геометрия руки

Наряду с системами для оценки геометрии лица существует оборудование для распознавания очертаний ладоней рук. При этом оценивается более 90 различных характеристик, включая размеры самой ладони (три измерения), длину и ширину пальцев, очертания суставов и т.п. В настоящее время идентификация пользователей по геометрии руки используется в законодательных органах, международных аэропортах, больницах, иммиграционных службах и т.д. Преимущества идентификации по геометрии ладони сравнимы с плюсами идентификации по отпечатку пальца в вопросе надежности, хотя устройство для считывания отпечатков ладоней занимает больше места.

Радужная оболочка глаза

Довольно надежное распознавание обеспечивают системы, анализирующие рисунок радужной оболочки человеческого глаза. Дело в том, что эта характеристика довольно стабильна, не меняется практически в течение всей жизни человека, невосприимчива к загрязнению и ранам. Заметим также, что радужки правого и левого глаза по рисунку существенно различаются.

Обычно различают активные и пассивные системы распознавания. В системах первого типа пользователь должен сам настроить камеру, передвигая ее для более точной наводки. Пассивные системы проще в использовании, поскольку камера в них настраивается автоматически. Высокая надежность этого оборудования позволяет применять его даже в исправительных учреждениях.

Преимущество сканеров для радужной оболочки состоит в том, что они не требуют, чтобы пользователь сосредоточился на цели, потому что образец пятен на радужной оболочке находится на поверхности глаза. Фактически видеоизображение глаза можно отсканировать даже на расстоянии менее метра, благодаря чему сканеры для радужной оболочки пригодны для банкоматов.

Сетчатка глаза

Метод идентификации по сетчатке глаза получил практическое применение сравнительно недавно - где-то в середине 50-х годов теперь уже прошедшего XX века. Именно тогда было доказано, что даже у близнецов рисунок кровеносных сосудов сетчатки не совпадает. Для того, чтобы зарегистрироваться в специальном устройстве, достаточно смотреть в глазок камеры менее минуты. За это время система успевает подсветить сетчатку и получить отраженный сигнал. Для сканирования сетчатки используется инфракрасное излучение низкой интенсивности, направленное через зрачок к кровеносным сосудам на задней стенке глаза. Из полученного сигнала выделяется несколько сотен первоначальных характерных точек, информация о которых усредняется и сохраняется в кодированном файле. К недостаткам подобных систем следует в первую очередь отнести психологический фактор: не всякий человек отважится посмотреть в неведомое темное отверстие, где что-то светит в глаз. К тому же надо следить за положением глаза относительно отверстия, поскольку подобные системы, как правило, чувствительны к неправильной ориентации сетчатки. Сканеры для сетчатки глаза получили большое распространение при организации доступа к сверхсекретным системам, поскольку гарантируют один из самых низких процентов отказа в доступе зарегистрированных пользователей и почти нулевой процент ошибок.

Голос и речь

Многие фирмы выпускают программное обеспечение, способное идентифицировать человека по голосу. Здесь оцениваются такие параметры, как высота тона, модуляция, интонация и т.п. В отличие от распознавания внешности, данный метод не требует дорогостоящей аппаратуры - достаточно лишь звуковой платы и микрофона.

Идентификация по голосу удобный, но не столь надежный способ, как другие биометрические методы. Например, у простуженного человека могут возникнуть трудности при использовании таких систем. Голос формируется из комбинации физиологических и поведенческих факторов, поэтому основная проблема, связанная с этим биометрическим подходом, - точность идентификации. В настоящее время идентификация по голосу используется для управления доступом в помещение средней степени безопасности.

Подпись

Как оказалось, подпись - такой же уникальный атрибут человека, как и его физиологические характеристики. Кроме того, это и более привычный для любого человека метод идентификации, поскольку он, в отличие от снятия отпечатков пальцев, не ассоциируется с криминальной сферой. Одна из перспективных технологий аутентификации основана на уникальности биометрических характеристик движения человеческой руки во время письма. Обычно выделяют два способа обработки данных о подписи: простое сравнение с образцом и динамическую верификацию. Первый весьма ненадежен, так как основан на обычном сравнении введенной подписи с хранящимися в базе данных графическими образцами. Из-за того, что подпись не может быть всегда одинаковой, этот метод дает большой процент ошибок. Способ динамической верификации требует намного более сложных вычислений и позволяет в реальном времени фиксировать параметры процесса подписи, такие как скорость движения руки на разных участках, сила давления и длительность различных этапов подписи. Это дает гарантии того, что подпись не сможет подделать даже опытный графолог, поскольку никто не в состоянии в точности скопировать поведение руки владельца подписи.

Пользователь, используя стандартный дигитайзер и ручку, имитирует свою обычную подпись, а система считывает параметры движения и сверяет их с теми, что были заранее введены в базу данных. При совпадении образа подписи с эталоном система прикрепляет к подписываемому документу информацию, включающую имя пользователя, адрес его электронной почты, должность, текущее время и дату, параметры подписи, содержащие несколько десятков характеристик динамики движения (направление, скорость, ускорение) и другие. Эти данные шифруются, затем для них вычисляется контрольная сумма, и далее все это шифруется еще раз, образуя так называемую биометрическую метку. Для настройки системы вновь зарегистрированный пользователь от пяти до десяти раз выполняет процедуру подписания документа, что позволяет получить усредненные показатели и доверительный интервал. Впервые данную технологию использовала компания PenOp.

Идентификацию по подписи нельзя использовать повсюду - в частности, этот метод не подходит для ограничения доступа в помещения или для доступа в компьютерные сети. Однако в некоторых областях, например в банковской сфере, а также всюду, где происходит оформление важных документов, проверка правильности подписи может стать наиболее эффективным, а главное -- необременительным и незаметным способом. До сих пор финансовое сообщество не спешило принимать автоматизированные методы идентификации подписи для кредитных карточек и проверки заявления, потому что подписи все еще слишком легко подделать. Это препятствует внедрению идентификации личности по подписи в высокотехнологичные системы безопасности.

Перспективы

Хотелось бы отметить, что наибольшую эффективность защиты обеспечивают системы, в которых биометрические системы сочетаются с другими аппаратными средствами аутентификации, например смарт-картами. Комбинируя различные способы биометрической и аппаратной аутентификации, можно получить весьма надежную систему защиты (что косвенно подтверждается большим интересом, который проявляют к этим технологиям ведущие производители).

Заметим, что смарт-карты образуют один из самых крупных и быстрорастущих сегментов рынка электронных продуктов для пользователей. По прогнозам фирмы Dataquest (http://www.dataquest.com), к следующему году объем продаж смарт-карт превысит полмиллиарда долларов. Применение смарт-карт требует наличия на каждом рабочем месте специального считывающего (терминального) устройства, подключенного к компьютеру, которое исключает необходимость вовлечения пользователя в процесс взаимодействия карты и сервера аутентификации. Собственно смарт-карта обеспечивает два уровня аутентификации. Для того чтобы система заработала, пользователь должен вставить смарт-карту в считывающее устройство, а затем правильно ввести личный идентификационный номер. На российском рынке комплексные решения, сочетающие идентификацию по отпечаткам пальцев и использование смарт-карт (рис. 3), предлагают, например, компании Compaq (http://www.compaq.ru) и Fujitsu-Siemens (http://www.fujitsu-siemens.ru).

Рис. 3. Комбинированная система со сканером и смарт-картой.

Кроме крупных компьютерных компаний, таких как Fujitsu-Siemens, Motorola, Sony, Unisys, разработкой биометрических технологий в настоящее время занимаются преимущественно небольшие частные компании, которые объединились в консорциум по биометрии - Biometric Consortium (http://www.biometrics.org). Одно из наиболее обнадеживающих свидетельств того, что биометрия наконец вливается в основное русло ИТ-индустрии, - создание интерфейса прикладного программирования BioAPI (Biometrics API). За этой разработкой стоит консорциум производителей, сформированный в 1998 г. корпорациями Compaq, IBM, Identicator Technology, Microsoft, Miros и Novell специально для выработки стандартизованной спецификации, поддерживающей существующие биометрические технологии, которую можно было бы внедрить в операционные системы и прикладное ПО. В консорциум BioAPI сегодня входят 78 крупных государственных и частных компаний.

Теперь корпоративные клиенты могут использовать биометрические продукты в рамках стандартных компьютерных и сетевых технологий, избежав, таким образом, значительных материальных и временных затрат на интеграцию всех компонентов системы. Стандартные API дают доступ к широкому спектру биометрических устройств и программных продуктов, а также позволяют совместно применять продукты нескольких поставщиков.

В этом году правительство США уже объявило о внедрении в государственных учреждениях открытого стандарта BioAPI. Нововведения коснутся в первую очередь министерства обороны США, где для нескольких миллионов военных и гражданских сотрудников предполагается ввести новые смарт-карты, хранящие отпечатки пальцев и образец подписи владельца.

По мнению ряда аналитиков, биометрические технологии развиваются пока достаточно медленно, однако недалеко то время, когда не только настольные и портативные компьютеры, но и мобильные телефоны будут немыслимы без подобных средств аутентификации. Большие ожидания связаны с поддержкой перспективных биометрических технологий операционной системой Microsoft Windows.

Презентацию к данной лекции можно скачать .

Простая идентификация личности. Комбинация параметров лица, голоса и жестов для более точной идентификации. Интеграция возможностей модулей Intel Perceptual Computing SDK для реализации многоуровневой системы информационной безопасности, основанной на биометрической информации.

В данной лекции дается введение в предмет биометрических систем защиты информации, рассматривается принцип действия, методы и применение на практике. Обзор готовых решений и их сравнение. Рассматриваются основные алгоритмы идентификации личности. Возможности SDK по созданию биометрических методов защиты информации.

4.1. Описание предметной области

Существует большое разнообразие методов идентификации и многие из них получили широкое коммерческое применение. На сегодняшний день в основе наиболее распространенных технологий верификации и идентификации лежит использование паролей и персональных идентификаторов ( personal identification number - PIN ) или документов типа паспорта, водительских прав. Однако такие системы слишком уязвимы и могут легко пострадать от подделки, воровства и других факторов. Поэтому все больший интерес вызывают методы биометрической идентификации, позволяющие определить личность человека по его физиологическим характеристикам путем распознания по заранее сохраненным образцам.

Диапазон проблем, решение которых может быть найдено с использованием новых технологий, чрезвычайно широк:

  • предотвратить проникновение злоумышленников на охраняемые территории и в помещения за счет подделки, кражи документов, карт, паролей;
  • ограничить доступ к информации и обеспечить персональную ответственность за ее сохранность;
  • обеспечить допуск к ответственным объектам только сертифицированных специалистов;
  • процесс распознавания, благодаря интуитивности программного и аппаратного интерфейса, понятен и доступен людям любого возраста и не знает языковых барьеров;
  • избежать накладных расходов, связанных с эксплуатацией систем контроля доступа (карты, ключи);
  • исключить неудобства, связанные с утерей, порчей или элементарным забыванием ключей, карт, паролей;
  • организовать учет доступа и посещаемости сотрудников.

Кроме того, важным фактором надежности является то, что она абсолютно никак не зависит от пользователя. При использовании парольной защиты человек может использовать короткое ключевое слово или держать бумажку с подсказкой под клавиатурой компьютера. При использовании аппаратных ключей недобросовестный пользователь будет недостаточно строго следить за своим токеном, в результате чего устройство может попасть в руки злоумышленника. В биометрических же системах от человека не зависит ничего. Еще одним фактором, положительно влияющим на надежность биометрических систем, является простота идентификации для пользователя. Дело в том, что, например, сканирование отпечатка пальца требует от человека меньшего труда, чем ввод пароля. А поэтому проводить эту процедуру можно не только перед началом работы, но и во время ее выполнения, что, естественно, повышает надежность защиты. Особенно актуально в этом случае использование сканеров, совмещенных с компьютерными устройствами. Так, например, есть мыши, при использовании которых большой палец пользователя всегда лежит на сканере. Поэтому система может постоянно проводить идентификацию, причем человек не только не будет приостанавливать работу, но и вообще ничего не заметит. В современном мире, к сожалению, продается практически все, в том числе и доступ к конфиденциальной информации. Тем более что человек, передавший идентификационные данные злоумышленнику, практически ничем не рискует. Про пароль можно сказать, что его подобрали, а про смарт-карту, что ее вытащили из кармана. В случае же использования биометрической защиты подобной ситуации уже не произойдет.

Выбор отраслей, наиболее перспективных для внедрения биометрии, с точки зрения аналитиков, зависит, прежде всего, от сочетания двух параметров: безопасности (или защищенности) и целесообразности использования именно этого средства контроля или защиты. Главное место по соответствию этим параметрам, бесспорно, занимают финансовая и промышленная сфера, правительственные и военные учреждения, медицинская и авиационная отрасли, закрытые стратегические объекты. Данной группе потребителей биометрических систем безопасности в первую очередь важно не допустить неавторизованного пользователя из числа своих сотрудников к неразрешенной для него операции , а также важно постоянно подтверждать авторство каждой операции . Современная система безопасности уже не может обходиться не только без привычных средств, гарантирующих защищенность объекта, но и без биометрии. Также биометрические технологии используются для контроля доступа в компьютерных, сетевых системах, различных информационных хранилищах, банках данных и др.

Биометрические методы защиты информации становятся актуальней с каждым годом. С развитием техники: сканеров, фото и видеокамер спектр задач, решаемых с помощью биометрии, расширяется, а использование методов биометрии становится популярнее. Например, банки, кредитные и другие финансовые организации служат для их клиентов символом надежности и доверия. Чтобы оправдать эти ожидания, финансовые институты все больше внимание уделяют идентификации пользователей и персонала, активно применяя биометрические технологии. Некоторые варианты использования биометрических методов:

  • надежная идентификация пользователей различных финансовых сервисов, в т.ч. онлайновых и мобильных (преобладает идентификация по отпечаткам пальцев, активно развиваются технологии распознавания по рисунку вен на ладони и пальце и идентификация по голосу клиентов, обращающихся в колл-центры);
  • предотвращение мошенничеств и махинаций с кредитными и дебетовыми картами и другими платежными инструментами (замена PIN-кода распознаванием биометрических параметров, которые невозможно похитить, "подсмотреть", клонировать);
  • повышение качества обслуживания и его комфорта (биометрические банкоматы);
  • контроль физического доступа в здания и помещения банков, а также к депозитарным ячейкам, сейфам, хранилищам (с возможностью биометрической идентификации, как сотрудника банка, так и клиента-пользователя ячейки);
  • защита информационных систем и ресурсов банковских и других кредитных организаций.

4.2. Биометрические системы защиты информации

Биометрические системы защиты информации - системы контроля доступа, основанные на идентификации и аутентификации человека по биологическим признакам, таким как структура ДНК, рисунок радужной оболочки глаза, сетчатка глаза, геометрия и температурная карта лица, отпечаток пальца, геометрия ладони. Также эти методы аутентификации человека называют статистическими методами, так как основаны на физиологических характеристиках человека, присутствующих от рождения и до смерти, находящиеся при нем в течение всей его жизни, и которые не могут быть потеряны или украдены. Часто используются еще и уникальные динамические методы биометрической аутентификации - подпись, клавиатурный почерк, голос и походка, которые основаны на поведенческих характеристиках людей.

Понятие " биометрия " появилось в конце девятнадцатого века. Разработкой технологий для распознавания образов по различным биометрическим характеристикам начали заниматься уже достаточно давно, начало было положено в 60-е годы прошлого века. Значительных успехов в разработке теоретических основ этих технологий добились наши соотечественники. Однако практические результаты получены в основном на западе и совсем недавно. В конце двадцатого века интерес к биометрии значительно вырос благодаря тому, что мощность современных компьютеров и усовершенствованные алгоритмы позволили создать продукты, которые по своим характеристикам и соотношению стали доступны и интересны широкому кругу пользователей. Отрасль науки нашла свое применение в разработках новых технологий безопасности. Например, биометрическая система может контролировать доступ к информации и хранилищам в банках, ее можно использовать на предприятиях, занятых обработкой ценной информации, для защиты ЭВМ, средств связи и т. д.

Суть биометрических систем сводится к использованию компьютерных систем распознавания личности по уникальному генетическому коду человека. Биометрические системы безопасности позволяют автоматически распознавать человека по его физиологическим или поведенческим характеристикам.


Рис. 4.1.

Описание работы биометрических систем:

Все биометрические системы работают по одинаковой схеме. Вначале, происходит процесс записи, в результате которого система запоминает образец биометрической характеристики. Некоторые биометрические системы делают несколько образцов для более подробного запечатления биометрической характеристики. Полученная информация обрабатывается и преобразуется в математический код. Биометрические системы информационной безопасности используют биометрические методы идентификации и аутентификации пользователей. Идентификация по биометрической системы проходит в четыре стадии:

  • Регистрация идентификатора - сведение о физиологической или поведенческой характеристике преобразуется в форму, доступную компьютерным технологиям, и вносятся в память биометрической системы;
  • Выделение - из вновь предъявленного идентификатора выделяются уникальные признаки, анализируемые системой;
  • Сравнение - сопоставляются сведения о вновь предъявленном и ранее зарегистрированном идентификаторе;
  • Решение - выносится заключение о том, совпадают или не совпадают вновь предъявленный идентификатор.

Заключение о совпадении/несовпадении идентификаторов может затем транслироваться другим системам (контроля доступа, защиты информации и т. д), которые далее действуют на основе полученной информации.

Одна из самых важных характеристик систем защиты информации, основанных на биометрических технологиях, является высокая надежность , то есть способность системы достоверно различать биометрические характеристики, принадлежащие разным людям, и надежно находить совпадения. В биометрии эти параметры называются ошибкой первого рода ( False Reject Rate , FRR ) и ошибкой второго рода ( False Accept Rate , FAR ). Первое число характеризует вероятность отказа доступа человеку, имеющему доступ , второе - вероятность ложного совпадения биометрических характеристик двух людей. Подделать папиллярный узор пальца человека или радужную оболочку глаза очень сложно. Так что возникновение "ошибок второго рода" (то есть предоставление доступа человеку, не имеющему на это право) практически исключено. Однако, под воздействием некоторых факторов биологические особенности, по которым производится идентификация личности, могут изменяться. Например, человек может простудиться, в результате чего его голос поменяется до неузнаваемости. Поэтому частота появлений "ошибок первого рода" (отказ в доступе человеку, имеющему на это право) в биометрических системах достаточно велика. Система тем лучше, чем меньше значение FRR при одинаковых значениях FAR . Иногда используется и сравнительная характеристика EER ( Equal Error Rate ), определяющая точку, в которой графики FRR и FAR пересекаются. Но она далеко не всегда репрезентативна. При использовании биометрических систем, особенно системы распознавания по лицу, даже при введении корректных биометрических характеристик не всегда решение об аутентификации верно. Это связано с рядом особенностей и, в первую очередь , с тем, что многие биометрические характеристики могут изменяться. Существует определенная степень вероятности ошибки системы. Причем при использовании различных технологий ошибка может существенно различаться. Для систем контроля доступа при использовании биометрических технологий необходимо определить, что важнее не пропустить "чужого" или пропустить всех "своих".


Рис. 4.2.

Не только FAR и FRR определяют качество биометрической системы. Если бы это было только так, то лидирующей технологией было бы распознавание людей по ДНК, для которой FAR и FRR стремятся к нулю. Но ведь очевидно, что эта технология не применима на сегодняшнем этапе развития человечества. Поэтому важной характеристикой является устойчивость к муляжу, скорость работы и стоимость системы. Не стоит забывать и то, что биометрическая характеристика человека может изменяться со временем, так что если она неустойчива - это существенный минус. Также важным фактором для пользователей биометрических технологий в системах безопасности является простота использования. Человек, характеристики которого сканируются, не должен при этом испытывать никаких неудобств. В этом плане наиболее интересным методом является, безусловно, технология распознавания по лицу. Правда, в этом случае возникают иные проблемы, связанные в первую очередь , с точностью работы системы.

Обычно биометрическая система состоит из двух модулей: модуль регистрации и модуль идентификации.

Модуль регистрации "обучает" систему идентифицировать конкретного человека. На этапе регистрации видеокамера или иные датчики сканируют человека для того, чтобы создать цифровое представление его облика. В результате сканирования чего формируются несколько изображений. В идеальном случае, эти изображения будут иметь слегка различные ракурсы и выражения лица, что позволит получить более точные данные. Специальный программный модуль обрабатывает это представление и определяет характерные особенности личности, затем создает шаблон . Существуют некоторые части лица, которые практически не изменяются с течением времени, это, например, верхние очертания глазниц, области окружающие скулы, и края рта. Большинство алгоритмов, разработанных для биометрических технологий, позволяют учитывать возможные изменения в прическе человека, так как они не используют для анализа области лица выше границы роста волос. Шаблон изображения каждого пользователя хранится в базе данных биометрической системы.

Модуль идентификации получает от видеокамеры изображение человека и преобразует его в тот же цифровой формат, в котором хранится шаблон . Полученные данные сравниваются с хранимым в базе данных шаблоном для того, чтобы определить, соответствуют ли эти изображения друг другу. Степень подобия, требуемая для проверки, представляет собой некий порог, который может быть отрегулирован для различного типа персонала, мощности PC , времени суток и ряда иных факторов.

Идентификация может выполняться в виде верификации, аутентификации или распознавания. При верификации подтверждается идентичность полученных данных и шаблона, хранимого в базе данных. Аутентификация - подтверждает соответствие изображения, получаемого от видеокамеры одному из шаблонов, хранящихся в базе данных. При распознавании, если полученные характеристики и один из хранимых шаблонов оказываются одинаковыми, то система идентифицирует человека с соответствующим шаблоном.

4.3. Обзор готовых решений

4.3.1. ИКАР Лаб: комплекс криминалистического исследования фонограмм речи

Аппаратно-программный комплекс ИКАР Лаб предназначен для решения широкого круга задач анализа звуковой информации, востребованного в специализированных подразделениях правоохранительных органов, лабораториях и центрах судебной экспертизы, службах расследования летных происшествий, исследовательских и учебных центрах. Первая версия продукта была выпущена в 1993 году и явилась результатом совместной работы ведущих аудиоэкспертов и разработчиков программного обеспечения. Входящие в состав комплекса специализированные программные средства обеспечивают высокое качество визуального представления фонограмм речи. Современные алгоритмы голосовой биометрии и мощные инструменты автоматизации всех видов исследования фонограмм речи позволяют экспертам существенно повысить надежность и эффективность экспертиз. Входящая в комплекс программа SIS II обладает уникальными инструментами для идентификационного исследования: сравнительное исследование диктора, записи голоса и речи которого предоставлены на экспертизу и образцов голоса и речи подозреваемого. Идентификационная фоноскопическая экспертиза основывается на теории уникальности голоса и речи каждого человека. Анатомическое факторы: строение органов артикуляции, форма речевого тракта и ротовой полости, а также внешние факторы: навыки речи, региональные особенности, дефекты и др.

Биометрические алгоритмы и экспертные модули позволяют автоматизировать и формализовать многие процессы фоноскопического идентификационного исследования, такие как поиск одинаковых слов, поиск одинаковых звуков, отбор сравниваемых звуковых и мелодических фрагментов, сравнение дикторов по формантам и основному тону, аудитивные и лингвистические типы анализа. Результаты по каждому методу исследования представляются в виде численных показателей общего идентификационного решения.

Программа состоит из ряда модулей, с помощью которых производится сравнение в режиме "один-к-одному". Модуль "Сравнения формант" основан на термине фонетики - форманте, обозначающий акустическую характеристику звуков речи (прежде всего гласных), связанную с уровнем частоты голосового тона и образующую тембр звука. Процесс идентификации с использованием модуля "Сравнения формант" может быть разделен на два этапа: cначала эксперт осуществляет поиск и отбор опорных звуковых фрагментов, а после того как опорные фрагменты для известного и неизвестного дикторов набраны, эксперт может начать сравнение. Модуль автоматически рассчитывает внутридикторскую и междикторскую вариативность формантных траекторий для выбранных звуков и принимает решение о положительной/отрицательной идентификации или неопределенном результате. Также модуль позволяет визуально сравнить распределения выбранных звуков на скаттерограмме.

Модуль "Сравнение Основного Тона" позволяет автоматизировать процесс идентификации дикторов с помощью метода анализа мелодического контура. Метод предназначен для сравнения речевых образцов на основе параметров реализации однотипных элементов структуры мелодического контура. Для анализа предусмотрено 18 типов фрагментов контура и 15 параметров их описания, включая значения минимума, среднего, максимума, скорости изменения тона, эксцесса, скоса и др. Модуль возвращает результаты сравнения в виде процентного совпадения для каждого из параметров и принимает решение о положительной/отрицательной идентификации или неопределенном результате. Все данные могут экспортироваться в текстовый отчет.

Модуль автоматической идентификации позволяет производить сравнение в режиме "один-к-одному" с использованием алгоритмов:

  • Спектрально-форматный;
  • Статистика основного тона;
  • Смесь Гауссовых распределений;

Вероятности совпадения и различия дикторов рассчитываются не только для каждого из методов, но и для их совокупности. Все результаты сравнения речевых сигналов двух файлах, получаемые в модуле автоматической идентификации, основаны на выделении в них идентификационно значимых признаков и вычислении меры близости между полученными наборами признаков и вычислений меры близости полученных наборов признаков между собой. Для каждого значения этой меры близости во время периода обучения модуля автоматического сравнения были получены вероятности совпадения и различия дикторов, речь которых содержалась в сравниваемых файлах. Эти вероятности были получены разработчиками на большой обучающей выборке фонограмм: десятки тысяч дикторов, различные каналы звукозаписи, множество сессий звукозаписи, разнообразный тип речевого материала. Применение статистических данных к единичному случаю сравнения файл-файл требует учета возможного разброса получаемых значений меры близости двух файлов и соответствующей ей вероятности совпадения/различия дикторов в зависимости от различных деталей ситуации произнесения речи. Для таких величин в математической статистике предложено использовать понятие доверительного интервала. Модуль автоматического сравнения выводит численные результаты с учетом доверительных интервалов различных уровней, что позволяет пользователю увидеть не только среднюю надежность метода, но и наихудший результат, полученный на обучающей базе. Высокая надежность биометрического движка, разработанного компанией ЦРТ, была подтверждена испытаниями NIST (National Institute of Standards and Technology)

  • Некоторые методы сравнения являются полуавтоматическими (лингвистический и аудитивный анализы)