Позднее связывание. Начальные сведения об объектном программировании

данных . Целью полиморфизма, применительно к объектно-ориентированному программированию, является использование одного имени для задания общих для класса действий.

В языке Java объектные переменные являются полиморфными (polymorphic). Например:
class King { public static void main(String args) { King king = new King() ; king = new AerysTargaryen() ; king = new RobertBaratheon() ; } } class RobertBaratheon extends King { } class AerysTargaryen extends King { }
Переменная типа King может ссылаться как на объект типа King, так и на объект любого подкласса King.
Возьмем следующий пример:

class King { public void speech() { System .out .println ("I"m the King of the Andals!" ) ; } public void speech(String quotation) { System .out .println ("Wise man said: " + quotation) ; } public void speech(Boolean speakLoudly) { if (speakLoudly) System .out .println ("I"M THE KING OF THE ANDALS!!!11" ) ; else System .out .println ("i"m... the king..." ) ; } } class AerysTargaryen extends King { @Override public void speech() { System .out .println ("Burn them all..." ) ; } @Override public void speech(String quotation) { System .out .println (quotation+ " ... And now burn them all!" ) ; } } class Kingdom { public static void main(String args) { King king = new AerysTargaryen() ; king.speech ("Homo homini lupus est" ) ; } }
Что происходит, когда вызывается метод, принадлежащий объекту king ?
1. Компилятор проверяет объявленный тип объекта и имя метода, нумерует все методы с именем speech в классе AerusTargarien и все открытые методы speech в суперклассах AerusTargarien . Теперь компилятору известны возможные кандидаты при вызове метода.
2. Компилятор определяет типы передаваемых в метод аргументов. Если найден единственный метод, сигнатура которого совпадает с аргументами, происходит вызов. Этот процесс king.speech("Homo homini lupus est") компилятор выберет метод speech(String quotation) , а не speech() .
Если компилятор находит несколько методов с подходящими параметрами (или ни одного), выдается сообщение об ошибке.



Теперь компилятор знает имя и типы параметров метода,подлежащего вызову.
3. В случае, если вызываемый метод является private , static , final или конструктором, используется статическое связывание (early binding ). В остальных случаях метод, подлежащий вызову, определяется по фактическому типу объекта, через который происходит вызов. Т.е. во время выполнения программы используется динамическое связывание (late binding) .

4. Виртуальная машина заранее создает таблицу методов для каждого класса, в которой перечисляются сигнатуры всех методов и фактические методы, подлежащие вызову.
Таблица методов для класса King выглядит так:
  • speech() - King . speech()
  • speech(String quotation) - King . speech(String quotation )
  • King . speech(Boolean speakLoudly )
А для класса AerysTargaryen - так:
  • speech() - AerysTargaryen . speech()
  • speech(String quotation) - AerysTargaryen . speech(String quotation )
  • speech(Boolean speakLoudly) - King . speech(Boolean speakLoudly )
Методы, унаследованные от Object, в данном примере игнорируются.
При вызове king. speech() :
  1. Определяется фактический тип переменной king . В данном случае это AerysTargaryen .
  2. Виртуальная машина определяет класс, к которому принадлежит метод speech()
  3. Происходит вызов метода.
Связывание всех методов в Java осуществляется полиморфно, через позднее связывание. Динамическое связывание обладает одной важной особенностью: оно позволяет модифицировать программы без перекомпиляции их кодов. Это делает программы динамически расширяемыми (extensible ).
А что произойдет, если вызвать в конструкторе динамически связываемый метод конструируемого объекта? Например:
class King { King() { System .out .println ("Call King constructor" ) ; speech() ; //polymorphic method overriden in AerysTargaryen } public void speech() { System .out .println ("I"m the King of the Andals!" ) ; } } class AerysTargaryen extends King { private String victimName; AerysTargaryen() { System .out .println ("Call Aerys Targaryen constructor" ) ; victimName = "Lyanna Stark" ; speech() ; } @Override public void speech() { System .out .println ("Burn " + victimName + "!" ) ; } } class Kingdom { public static void main(String args) { King king = new AerysTargaryen() ; } } Результат:

Call King constructor Burn null! Call Aerys Targaryen constructor Burn Lyanna Stark !
Конструктор базового класса всегда вызывается в процессе конструирования производного класса. Вызов автоматически проходит вверх по цепочке наследования, так что в конечном итоге вызываются конструкторы всех базовых классов по всей цепочке наследования.
Это значит, что при вызове конструктора new AerysTargaryen() будут вызваны:
  1. new Object()
  2. new King()
  3. new AerysTargaryen()
По определению, задача конструктора — дать объекту жизнь. Внутри любого конструктора объект может быть сформирован лишь частично — известно только то, что объекты базового класса были проинициализированы. Если конструктор является лишь очередным шагом на пути построения объекта класса, производного от класса данного конструктора, «производные» части еще не были инициализированы на момент вызова текущего конструктора.

Однако динамически связываемый вызов может перейти во «внешнюю» часть иерархии, то есть к производным классам. Если он вызовет метод производного класса в конструкторе, это может привести к манипуляциям с неинициализированными данными, что мы и видим в результате работы данного примера.

Результат работы программы обусловлен выполнение алгоритма иницализации объекта:

  1. Память, выделенная под новый объект, заполняется двоичными нулями.
  2. Конструкторы базовых классов вызываются в описанном ранее порядке. В этот момент вызывается переопределенный метод speech() (да, перед вызовом конструктора класса AerysTargaryen ), где обнаруживается, что переменная victimName равна null из-за первого этапа.
  3. Вызываются инициализаторы членов класса в порядке их определения.
  4. Исполняется тело конструктора производного класса.
В частности из-за таких поведенческих моментов стоит придерживаться следующего правила написания конструкторов:
- выполняйте в конструкторе лишь самые необходимые и простые действия по инициализации объекта
- по возможности избегайте вызова методов, не определенных как private или final (что в данном контексте одно и то же).
Использованы материалы:
  1. Eckel B. - Thinking in Java , 4th Edition - Chapter 8
  2. Cay S. Horstmann, Gary Cornell - Core Java 1 - Chapter 5
  3. Wikipedia

Данный параграф , несмотря на краткость, является очень важным – практически все профессиональное программирование в Java основано на использовании полиморфизма. В то же время эта тема является одной из наиболее сложных для понимания учащимися. Поэтому рекомендуется внимательно перечитать этот параграф несколько раз.

Методы классов помечаются модификатором static не случайно – для них при компиляции программного кода действует статическое связывание . Это значит, что в контексте какого класса указано имя метода в исходном коде, на метод того класса в скомпилированном коде и ставится ссылка . То есть осуществляется связывание имени метода в месте вызова с исполняемым кодом этого метода. Иногда статическое связывание называют ранним связыванием , так как оно происходит на этапе компиляции программы. Статическое связывание в Java используется еще в одном случае – когда класс объявлен с модификатором final ("финальный", "окончательный").

Методы объектов в Java являются динамическими, то есть для них действует динамическое связывание . Оно происходит на этапе выполнения программы непосредственно во время вызова метода, причем на этапе написания данного метода заранее неизвестно, из какого класса будет проведен вызов. Это определяется типом объекта, для которого работает данный код - какому классу принадлежит объект , из того класса вызывается метод. Такое связывание происходит гораздо позже того, как был скомпилирован код метода. Поэтому такой тип связывания часто называют поздним связыванием .

Программный код, основанный на вызове динамических методов , обладает свойством полиморфизма – один и тот же код работает по -разному в зависимости от того, объект какого типа его вызывает, но делает одни и те же вещи на уровне абстракции, относящейся к исходному коду метода.

Для пояснения этих не очень понятных при первом чтении слов рассмотрим пример из предыдущего параграфа – работу метода moveTo. Неопытным программистам кажется, что этот метод следует переопределять в каждом классе-наследнике. Это действительно можно сделать, и все будет правильно работать. Но такой код будет крайне избыточным – ведь реализация метода будет во всех классах-наследниках Figure совершенно одинаковой:

public void moveTo(int x, int y){ hide(); this.x=x; this.y=y; show(); };

Кроме того, в этом случае не используются преимущества полиморфизма. Поэтому мы не будем так делать.

Еще часто вызывает недоумение, зачем в абстрактном классе Figure писать реализацию данного метода. Ведь используемые в нем вызовы методов hide и show , на первый взгляд, должны быть вызовами абстрактных методов – то есть, кажется, вообще не могут работать!

Но методы hide и show являются динамическими, а это, как мы уже знаем, означает, что связывание имени метода и его исполняемого кода производится на этапе выполнения программы. Поэтому то, что данные методы указаны в контексте класса Figure , вовсе не означает, что они будут вызываться из класса Figure ! Более того, можно гарантировать, что методы hide и show никогда не будут вызываться из этого класса. Пусть у нас имеются переменные dot1 типа Dot и circle1 типа Circle , и им назначены ссылки на объекты соответствующих типов. Рассмотрим, как поведут себя вызовы dot1.moveTo(x1,y1) и circle1.moveTo(x2,y2) .

При вызове dot1.moveTo(x1,y1) происходит вызов из класса Figure метода moveTo . Действительно, этот метод в классе Dot не переопределен, а значит, он наследуется из Figure . В методе moveTo первый оператор – вызов динамического метода hide . Реализация этого метода берется из того класса, экземпляром которого является объект dot1 , вызывающий данный метод. То есть из класса Dot . Таким образом, скрывается точка. Затем идет изменение координат объекта, после чего вызывается динамический метод show . Реализация этого метода берется из того класса, экземпляром которого является объект dot1 , вызывающий данный метод. То есть из класса Dot . Таким образом, на новом месте показывается точка.

Для вызова circle1.moveTo(x2,y2) все абсолютно аналогично – динамические методы hide и show вызываются из того класса, экземпляром которого является объект circle1 , то есть из класса Circle . Таким образом, скрывается на старом месте и показывается на новом именно окружность .

То есть если объект является точкой, перемещается точка. А если объект является окружностью - перемещается окружность . Более того, если когда-нибудь кто-нибудь напишет, например, класс Ellipse , являющийся наследником Circle , и создаст объект Ellipse ellipse=new Ellipse(…) , то вызов ellipse.moveTo(…) приведет к перемещению на новое место эллипса. И происходить это будет в соответствии с тем, каким образом в классе Ellipse реализуют методы hide и show . Заметим, что работать будет давным-давно скомпилированный полиморфный код класса Figure . Полиморфизм обеспечивается тем, что ссылки на эти методы в код метода moveTo в момент компиляции не ставятся – они настраиваются на методы с такими именами из класса вызывающего объекта непосредственно в момент вызова метода moveTo .

В объектно-ориентированных языках программирования различают две разновидности динамических методов – собственно динамические и виртуальные . По принципу работы они совершенно аналогичны и отличаются только особенностями реализации. Вызов виртуальных методов быстрее. Вызов динамических медленнее, но служебная таблица динамических методов ( DMT – Dynamic Methods Table ) занимает чуть меньше памяти, чем таблица виртуальных методов ( VMT – Virtual Methods Table ).

Может показаться, что вызов динамических методов неэффективен с точки зрения затрат по времени из-за длительности поиска имен. На самом деле во время вызова поиска имен не делается, а используется гораздо более быстрый механизм, использующий упомянутую таблицу виртуальных (динамических) методов. Но мы на особенностях реализации этих таблиц останавливаться не будем, так как в Java нет различения этих видов методов.

6.8. Базовый класс Object

Класс Object является базовым для всех классов Java . Поэтому все его поля и методы наследуются и содержатся во всех классах. В классе Object содержатся следующие методы:

  • public Boolean equals(Object obj) – возвращает true в случае, когда равны значения объекта, из которого вызывается метод, и объекта, передаваемого через ссылку obj в списке параметров. Если объекты не равны, возвращается false . В классе Object равенство рассматривается как равенство ссылок и эквивалентно оператору сравнения "==" . Но в потомках этот метод может быть переопределен, и может сравнивать объекты по их содержимому. Например, так происходит для объектов оболочечных числовых классов. Это легко проверить с помощью такого кода:

    Double d1=1.0,d2=1.0; System.out.println("d1==d2 ="+(d1==d2)); System.out.println("d1.equals(d2) ="+(d1.equals(d2)));

    Первая строка вывода даст d1==d2 =false , а вторая d1. equals (d2) =true

  • public int hashCode() – выдает хэш-код объекта. Хэш-кодом называется условно уникальный числовой идентификатор, сопоставляемый какому-либо элементу. Из соображений безопасности выдавать адрес объекта прикладной программе нельзя. Поэтому в Java хэш-код заменяет адрес объекта в тех случаях, когда для каких-либо целей надо хранить таблицы адресов объектов.
  • protected Object clone() throws CloneNotSupportedException – метод занимается копированием объекта и возвращает ссылку на созданный клон (дубликат) объекта. В наследниках класса Object его обязательно надо переопределить, а также указать, что класс реализует интерфейс Clonable . Попытка вызова метода из объекта, не поддерживающего клонирования , вызывает возбуждение исключительной ситуации CloneNotSupportedException ("Клонирование не поддерживается"). Про интерфейсы и исключительные ситуации будет рассказано в дальнейшем.

    Различают два вида клонирования : мелкое (shallow ), когда в клон один к одному копируются значения полей оригинального объекта, и глубокое (deep ), при котором для полей ссылочного типа создаются новые объекты, клонирующие объекты, на которые ссылаются поля оригинала. При мелком клонировании и оригинал, и клон будут ссылаться на одни и те же объекты. Если объект имеет поля только примитивных типов , различия между мелким и глубоким клонированием нет. Реализацией клонирования занимается программист, разрабатывающий класс, автоматического механизма клонирования нет. И именно на этапе разработки класса следует решить, какой вариант клонирования выбирать. В подавляющем большинстве случаев требуется глубокое клонирование .

  • public final Class getClass() – возвращает ссылку на метаобъект типа класс. С его помощью можно получать информацию о классе, к которому принадлежит объект, и вызывать его методы класса и поля класса .
  • protected void finalize() throws Throwable – вызывается перед уничтожением объекта. Должен быть переопределен в тех потомках Object , в которых требуется совершать какие-либо вспомогательные действия перед уничтожением объекта (закрыть файл, вывести сообщение, отрисовать что-либо на экране, и т.п.). Подробнее об этом методе говорится в соответствующем параграфе.
  • public String toString() – возвращает строковое представление объекта (настолько адекватно, насколько это возможно). В классе Object этот метод реализует выдачу в строку полного имени объекта (с именем пакета), после которого следует символ "@" , а затем в шестнадцатеричном виде хэш-код объекта. В большинстве стандартных классов этот метод переопределен. Для числовых классов возвращается строковое представление числа, для строковых – содержимое строки, для символьного – сам символ (а не строковое представление его кода!). Например, следующий фрагмент кода

    Object obj=new Object(); System.out.println(" obj.toString() дает "+obj.toString()); Double d=new Double(1.0); System.out.println(" d.toString()дает "+d.toString()); Character c="A"; System.out.println("c.toString() дает "+c.toString());

    обеспечит вывод

    obj.toString() дает java.lang.Object@fa9cf d.toString()дает 1.0 c.toString()дает A

Также имеются методы notify() , notifyAll() , и несколько перегруженных вариантов метода wait , предназначенные для работы с потоками (threads). О них говорится в разделе, посвященном потокам.

6.9. Конструкторы. Зарезервированные слова super и this. Блоки инициализации

Как уже говорилось, объекты в Java создаются с помощью зарезервированного слова new , после которого идет конструктор – специальная подпрограмма , занимающаяся созданием объекта и инициализацией полей создаваемого объекта. Для него не указывается тип возвращаемого значения, и он не является ни методом объекта (вызывается через имя класса когда объекта еще нет), ни методом класса (в конструкторе доступен объект и его поля через ссылку this ). На самом деле конструктор в сочетании с оператором new возвращает ссылку на создаваемый объект и может считаться особым видом методов, соединяющим в себе черты методов класса и методов объекта.

Если в объекте при создании не нужна никакая дополнительная инициализация , можно использовать конструктор , который по умолчанию присутствует для каждого класса. Это имя класса , после которого ставятся пустые круглые скобки – без списка параметров. Такой конструктор при разработке класса задавать не надо, он присутствует автоматически.

Если требуется инициализация , обычно применяют конструкторы со списком параметров. Примеры таких конструкторов рассматривались нами для классов Dot и Circle . Классы Dot и Circle были унаследованы от абстрактных классов , в которых не было конструкторов. Если же идет наследование от неабстрактного класса, то есть такого, в котором уже имеется конструктор (пусть даже и конструктор по умолчанию), возникает некоторая специфика. Первым оператором в конструкторе должен быть вызов конструктора из суперкласса . Но его делают не через имя этого класса, а с помощью зарезервированного слова super (от " superclass "), после которого идет необходимый для прародительского конструктора список параметров. Этот конструктор инициализирует поля данных, которые наследуются от суперкласса (в том числе и от всех более ранних прародителей). Например, напишем класс FilledCircle - наследник от Circle , экземпляр которого будет отрисовываться как цветной круг.

package java_gui_example; import java.awt.*; public class FilledCircle extends Circle{ /** Creates a new instance of FilledCircle */ public FilledCircle(Graphics g,Color bgColor, int r,Color color) { super(g,bgColor,r); this.color=color; } public void show(){ Color oldC=graphics.getColor(); graphics.setColor(color); graphics.setXORMode(bgColor); graphics.fillOval(x,y,size,size); graphics.setColor(oldC); graphics.setPaintMode(); } public void hide(){ Color oldC=graphics.getColor(); graphics.setColor(color); graphics.setXORMode(bgColor); graphics.fillOval(x,y,size,size); graphics.setColor(oldC); graphics.setPaintMode(); }}

Вообще, логика создания сложно устроенных объектов: родительская часть объекта создается и инициализируется первой, начиная от части, доставшейся от класса Object , и далее по иерархии, заканчивая частью, относящейся к самому классу. Именно поэтому обычно первым оператором конструктора является вызов прародительского конструктора super (список параметров ), так как обращение к неинициализированной части объекта, относящейся к ведению прародительского класса, может привести к непредсказуемым последствиям.

В данном классе мы применяем более совершенный способ отрисовки и "скрывания" фигур по сравнению с предыдущими классами. Он основан на использовании режима рисования XOR ("исключающее или"). Установка этого режима производится методом setXORMode . При этом повторный вывод фигуры на то же место приводит к восстановлению первоначального изображения в области вывода. Переход в обычный режим рисования осуществляется методом setPaintMode .

В конструкторах очень часто используют

Позднее связывание с компонентами COM

Прежде чем исполнимый файл клиента сможет вызвать методы и свойства объекта компонента, ему необходимо узнать адреса памяти этих методов и свойств. Существуют две различные технологии, которые клиентские программы могут использовать для определения этих адресов.

Программы с ранним связыванием узнают адреса на ранней стадии процесса компиляции/выполнения - во время компиляции. Когда программа (ранним связыванием компилируется, компилятор использует библиотеку типов компонента для включения адресов методов и свойств компонента в клиентскую исполнимую программу, чтобы к адресам можно было очень быстро и безошибочно обращаться. Технологии взаимодействия COM которые были рассмотрены до сих пор, используют раннее связывание.

Со своей стороны, программы с поздним связыванием узнают адреса свойств и методов на поздней стадии процесса компиляции/выполнения, в тот самый момент, когда эти свойства и методы вызываются . Код с поздним связыванием обычно обращается к клиентским объектам через базовые типы данных, такие как object , и использует среду времени выполнения для динамического определения адресов методов. Хотя код с поздним связыванием позволяет использовать некоторые сложные технологии программирования, такие как полиморфизм, он требует некоторых связанных расходов, которые мы вскоре увидим.

Но сначала проверим, как позднее связывание выполняется с помощью отражения в C# (Отражение, является способом, который используется кодом во время выполнения для определения информации об интерфейсах серверных классов; см. главу 5.)

При позднем связывании с объектом COM в программе C# не нужно создавать RCW для компонента COM. Вместо этого вызывается метод класса GetTypeFromProgID класса Type для создания экземпляра объекта, представляющего тип объекта COM. Класс Type является членом пространства имен System.Runtime.InteropServices и в коде ниже мы конфигурируем объект Type для того же компонента COM доступа к данным, который использовался в предыдущих примерах:


Type objCustomerTableType;

Когда имеется объект Type , инкапсулирующий информацию о типе объекта COM, он используется для создания экземпляра самого объекта COM. Это реализуется передачей объекта Type в метод класса CreateInstance класса Activator.CreateInstance создает экземпляр объекта COM и возвращает на него ссылку позднего связывания, которую можно сохранить в ссылке типа object.

object objCustomerTable;
objCustomerTable = Activator.CreateInstance(objCustomerTableType);

К сожалению, невозможно вызывать методы непосредственно на ссылке типа object . Чтобы можно было обратиться к объекту COM, необходимо использовать метод InvokeMember объекта Type , который был создан вначале. При вызове метода InvokeMember ему передается ссылка на объект COM вместе с именем вызываемого метода COM, а также массив типа object всех входящих аргументов метода.

ObjCustomerTableType.InvokeMember("Delete", BindingFlags.InvokeMethod, null, objCustomerTable, aryInputArgs);

Напомним еще раз последовательность действий:

1. Создать объект Type для типа объекта COM с помощью метода класса Type.GetTypeFromProgID() .

2. Использовать этот объект Type для создания объекта COM с помощью Activator.CreateInstance() .

3. Методы вызываются на объекте COM, вызывая метод InvokeMember на объекте Type и передавая в него ссылку object в качестве входящего аргумента. Ниже приведен пример кода, объединяющий все это в один блок:

using System.Runtime.InteropServices;
Type objCustomerTableType;
object objCustomerTable;
objCustomerTableType=Type.GetTypeFromProgID("DataAccess.CustomerTable");
objCustomerTable=Activator.CreateInstance(ObjCustomerTableType);
objCustomerTableType.InvokeMember("Delete", BindingFlags, InvokeMethod, null, objCustomerTable, aryInputArgs);
objCustomerTableType = Type.GetTypeFromProgID("DataAccess.CustomerTable");

Хотя средства позднего связывания C# позволяют избежать трудностей RCW, необходимо знать о некоторых, связанных с этим, недостатках.

Первый: позднее связывание может быть опасным. При использовании раннего связывания компилятор может запросить библиотеку типов компонента COM, чтобы убедиться, что все вызываемые на объектах COM методы в действительности существуют. При позднем связывании ничто не препятствует опечатке в вызове метода InvokeMember() , что может породить ошибку во время выполнения.

Связывание в языке C++

Двумя основными целями при разработке языка программирования С++ были эффективное использование памяти и скорость выполнения. Он был задуман как усовершенствование языка С, в частности, для объектно-ориентированных приложений. Основной принцип С++: никакое свойство языка не должно приводить к возникновению дополнительных издержек (как по памяти, так и по скорости), если данное свойство программистом не используется. Например, если вся объектная ориентированность С++ игнорируется, то оставшаяся часть должна работать так же быстро, как и традиционный С. Поэтому неудивительно что большинство методов в С++ связываются статически (во время компиляции), а не динамически (во время выполнения).

Связывание методов в этом языке является довольно сложным. Для обычных переменных (не указателей или ссылок) оно осуществляется статически. Но когда объекты обозначаются с помощью указателей или ссылок, используется динамическое связывание. В последнем случае решение о выборе метода статического или динамического типа диктуется тем, описан ли соответствующий метод с помощью ключевого слова virtual. Если он объявлен именно так, то метод поиска сообщения базируется на динамическом классе, если нет на статическом. Даже в тех случаях, когда используется динамическое связывание, законность любого запроса определяется компилятором на основе статического класса получателя.

Рассмотрим, например, следующее описание классов и глобальных переменных: class Mammal

printf («cant speak»);

class Dog: public Mammal

printf («wouf wouf»);

printf («wouf wouf, as well»);

Mammal *fido = new Dog;

Выражение fred.speak() печатает «cant speak», однако вызов fido->speak() также напечатает «cant speak», поскольку соответствующий метод в классе Mammal не объявлен как виртуальный. Выражение fido->bark() не допускается компилятором, даже если динамический тип для fido класс Dog. Тем не менее статический тип переменной всего лишь класс Mammal.

Если мы добавим слово virtual:

virtual void speak()

printf («cant speak»);

то получим на выходе для выражения fido->speak() ожидаемый результат.

Относительно недавнее изменение в языке С++ добавление средств для распознавания динамического класса объекта. Они образуют систему RTTI (Run-Time Type Identification идентификация типа во время выполнения).

В системе RTTI каждый класс имеет связанную с ним структуру типа typeinfo, которая кодирует различную информацию о классе. Поле данных name одно из полей данных этой структуры содержит имя класса в виде текстовой строки. Функция typeid может использоваться для анализа информации о типе данных. Следовательно, следующая ниже команда будет печатать строку «Dog» динамический тип данных для fido. В этом примере необходимо разыменовывать переменную-указатель fido, чтобы аргумент был значением, на которое ссылается указатель, а не самим указателем:

cout << «fido is a» << typeid(*fido).name() << endl;

Можно также спросить, используя функцию-член before, соответствует ли одна структура с информацией о типе данных подклассу класса, соотносящегося с другой структурой. Например, следующие два оператора выдают true и false:

if (typeid(*fido).before (typeid(fred)))…

if (typeid(fred).before (typeid(lassie)))…

До появления системы RTTI стандартный программистский трюк состоял в том, чтобы явным образом закодировать в иерархии класса методы быть экземпляром. Например, для проверки значения переменных типа Animal на принадлежность к типу Cat или к типу Dog можно было бы определить следующую систему методов:

virtual int isaDog()

virtual int isaCat()

class Dog: public Mammal

virtual int isaDog()

class Cat: public Mammal

virtual int isaCat()

Теперь для определения того, является ли текущим значением переменной fido величина типа Dog, можно использовать команду fido->isaDog(). Если возвращается ненулевое значение, то можно привести тип переменной к нужному типу данных.

Возвращая указатель, а не целое число, мы объединяем проверку на принадлежность к подклассу и приведение типа. Это аналогично другой части системы RTTI, называемой dynamic_cast, которую мы вкратце опишем. Если некая функция в классе Mammal возвращает указатель на Dog, то класс Dog должен быть предварительно описан. Результатом присваивания является либо нулевой указатель, либо правильная ссылка на класс Dog. Итак, проверка результата все еще должна осуществляться, но мы исключаем необходимость приведения типа. Это показано в следующем примере:

class Dog; // предварительное описание

virtual Dog* isaDog()

virtual Cat* isaCat()

class Dog: public Mammal

virtual Dog* isaDog()

class Cat: public Mammal

virtual Cat* isaCat()

Оператор lassie = fido->isaDog(); теперь выполним всегда. В результате переменная lassie получает ненулевое значение, только если fido имеет динамический класс Dog. Если fido не принадлежит Dog, то переменной lassie будет присвоен нулевой указатель.

lassie = fido->isaDog();

… // fido и в самом деле относится к типу Dog

… // присваивание не сработало

… // fido не принадлежит к типу Dog

Хотя программист и может использовать этот метод для обращения полиморфизма, недостаток такого способа состоит в том, что требуется добавление методов как в родительский, так и в дочерний классы. Если из одного общего родительского класса проистекает много дочерних, метод становится громоздким. Если изменения в родительском классе не допускаются, такая техника вообще невозможна.

Поскольку подобные проблемы встречаются часто, было найдено их общее решение. Функция шаблона dynamic_cast берет тип в качестве аргумента шаблона и, в точности как функция, определенная выше, возвращает либо значение аргумента (если приведение типа законно), либо нулевое значение (если приведение типа неразрешено). Присваивание, эквивалентное сделанному в предыдущем примере, может быть записано так:

// конвертировать только в том случае, если fido является собакой

lassie = dynamic_cast < Dog* > (fido);

// затем проверить, выполнено ли приведение

В язык C++ были добавлены еще три типа приведения (static_cast, const_cast и reinterpret_cast), но они используются в особых случаях и поэтому здесь не описываются. Программистам рекомендуется применять их как более безопасные средства вместо прежнего механизма приведения типов.

2. Проектная часть

Применение рефлексии, позднего связывания и атрибутов

В данной статье я предлагаю посмотреть комплексный пример использования рефлексии, позднего связывания и атрибутов. Давайте предположим, что была поставлена задача разработать так называемое расширяемое приложение, к которому можно было бы подключать сторонние инструменты.

Что именно подразумевается под расширяемым приложением? Рассмотрим IDE-среду Visual Studio 2010. При разработке в этом приложении были предусмотрены специальные "ловушки" (hook) для предоставления другим производителям ПО возможности подключать свои специальные модули. Понятно, что разработчики Visual Studio 2010 не могли добавить ссылки на несуществующие внешние сборки.NET (т.е. воспользоваться ранним связыванием), тогда как же им удалось обеспечить в приложении необходимые методы-ловушки? Ниже описан один из возможных способов решения этой проблемы.

    Во-первых, любое расширяемое приложение должно обязательно обладать каким-нибудь механизмом для ввода, который даст возможность пользователю указать подключаемый модуль (например, диалоговым окном или соответствующим флагом командной строки). Это требует применения динамической загрузки.

    Во-вторых, любое расширяемое приложение должно обязательно быть способным определять, поддерживает ли модуль функциональные возможности (например, набор интерфейсов), необходимые для его подключения к среде. Это требует применения рефлексии.

    В-третьих, любое расширяемое приложение должно обязательно получать ссылку на требуемую инфраструктуру (например, набор типов интерфейсов) и вызывать ее члены для приведения в действие лежащих в ее основе функций. Это может требовать применения позднего связывания.

Если расширяемое приложение изначально программируется так, чтобы запрашивать определенные интерфейсы, оно получает возможность определять во время выполнения, может ли активизироваться интересующий тип, и после успешного прохождения типом такой проверки позволять ему поддерживать дополнительные интерфейсы и получать доступ к их функциональным возможностям полиморфным образом. Именно такой подход и предприняли разработчики Visual Studio 2010, причем ничего особо сложного в нем нет.

В первую очередь необходимо создать сборку с типами, которые должна обязательно использовать каждая оснастка, чтобы иметь возможность подключаться к расширяемому приложению. Для этого создадим проект типа Class Library (Библиотека классов), и определим в нем два следующих типа:

Using System; namespace PW_CommonType { public interface IApplicationFunc { void Go(); } public class InfoAttribute: System.Attribute { public string CompanyName { get; set; } public string CompanyUrl { get; set; } } }

Далее потребуется создать тип, реализующий интерфейс IApplicationFunc. Чтобы не усложнять пример создания расширяемого приложения, давайте сделаем этот тип простым. Создадим новый проект типа Class Library на C# и определим в нем тип класса по имени MyCompanyInfo:

Using System; using PW_CommonType; using System.Windows..Go() { MessageBox.Show("Важная информация!"); } } }

И, наконец, последний шаг заключается в создании самого расширяемого приложения Windows Forms, которое позволит пользователю выбирать желаемую оснастку с помощью стандартного диалогового окна открытия файлов Windows.

Теперь нужно добавить в него ссылку на сборку PW_CommonType.dll, но не на библиотекy кода CompanyInfo.dll. Кроме того, необходимо импортировать в главный файл кода формы (для его открытия щелкните правой кнопкой мыши в визуальном конструкторе формы и выберите в контекстном меню пункт View Code (Просмотреть код)) пространства имен System.Reflection и PW_CommonType. Вспомните, что цель создания данного приложения состоит в том, чтобы увидеть, как использовать позднее связывание и рефлексию для проверки отдельных двоичных файлов, создаваемых другими производителям, на предмет их способности выступать в роли подключаемых оснасток.