Реляционные базы данных термины и определения. Реляционные базы данных

Основными понятиями реляционных баз данных являются тип данных, домен, атрибут, кортеж, первичный ключ и отношение. Покажем смысл этих понятий на примере отношения СОТРУДНИКИ,содержащего информацию о сотрудниках некоторой организации:

1. Тип данных

Понятие тип данных в реляционной модели данных полностью адекватно понятию типа данных в языках программирования. Обычно в современных реляционных БД допускается хранение символьных, числовых данных, битовых строк, специализированных числовых данных (таких как "деньги"), а также специальных "темпоральных" данных (дата, время, временной интервал). Достаточно активно развивается подход к расширению возможностей реляционных систем абстрактными типами данных (соответствующими возможностями обладают, например, системы семейства Ingres/Postgres). В нашем примере мы имеем дело с данными трех типов: строки символов, целые числа и "деньги".

2. Домен

Понятие домена более специфично для баз данных, хотя и имеет некоторые аналогии с подтипами в некоторых языках программирования. В самом общем виде домен определяется заданием некоторого базового типа данных, к которому относятся элементы домена, и произвольного логического выражения, применяемого к элементу типа данных. Если вычисление этого логического выражения дает результат "истина", то элемент данных является элементом домена. Наиболее правильной интуитивной трактовкой понятия домена является понимание домена как допустимого потенциального множества значений данного типа. Например, домен "Имена" в нашем примере определен на базовом типе строк символов, но в число его значений могут входить только те строки, которые могут изображать имя (в частности, такие строки не могут начинаться с мягкого знака). Следует отметить также семантическую нагрузку понятия домена: данные считаются сравнимыми только в том случае, когда они относятся к одному домену. В нашем примере значения доменов "Номера пропусков" и "Номера групп" относятся к типу целых чисел, но не являются сравнимыми. Заметим, что в большинстве реляционных СУБД понятие домена не используется, хотя в Oracle V.7 оно уже поддерживается.

3. Схема отношения, схема базы данных

Схема отношения - это именованное множество пар {имя атрибута, имя домена (или типа, если понятие домена не поддерживается)}. Степень или "арность" схемы отношения - мощность этого множества. Степень отношения СОТРУДНИКИ равна четырем, то есть оно является 4-арным. Если все атрибуты одного отношения определены на разных доменах, осмысленно использовать для именования атрибутов имена соответствующих доменов (не забывая, конечно, о том, что это является всего лишь удобным способом именования и не устраняет различия между понятиями домена и атрибута). Схема БД (в структурном смысле) - это набор именованных схем отношений.

4. Кортеж, отношение

Кортеж, соответствующий данной схеме отношения, - это множество пар {имя атрибута, значение}, которое содержит одно вхождение каждого имени атрибута, принадлежащего схеме отношения. "Значение" является допустимым значением домена данного атрибута (или типа данных, если понятие домена не поддерживается). Тем самым, степень или "арность" кортежа, т.е. число элементов в нем, совпадает с "арностью" соответствующей схемы отношения. Попросту говоря, кортеж - это набор именованных значений заданного типа.
Отношение - это множество кортежей, соответствующих одной схеме отношения. Иногда, чтобы не путаться, говорят "отношение-схема" и "отношение-экземпляр", иногда схему отношения называют заголовком отношения, а отношение как набор кортежей - телом отношения. На самом деле, понятие схемы отношения ближе всего к понятию структурного типа данных в языках программирования. Было бы вполне логично разрешать отдельно определять схему отношения, а затем одно или несколько отношений с данной схемой.
Обычным житейским представлением отношения является таблица, заголовком которой является схема отношения, а строками - кортежи отношения-экземпляра; в этом случае имена атрибутов именуют столбцы этой таблицы. Поэтому иногда говорят "столбец таблицы", имея в виду "атрибут отношения". Реляционная база данных - это набор отношений, имена которых совпадают с именами схем отношений в схеме БД.

Фундаментальные свойства отношений

1.Отсутствие кортежей-дубликатов

То свойство, что отношения не содержат кортежей-дубликатов, следует из определения отношения как множества кортежей. В классической теории множеств по определению каждое множество состоит из различных элементов. Из этого свойства вытекает наличие у каждого отношения так называемого первичного ключа - набора атрибутов, значения которых однозначно определяют кортеж отношения. Для каждого отношения по крайней мере полный набор его атрибутов обладает этим свойством. Однако при формальном определении первичного ключа требуется обеспечение его "минимальности", т.е. в набор атрибутов первичного ключа не должны входить такие атрибуты, которые можно отбросить без ущерба для основного свойства - однозначно определять кортеж. Понятие первичного ключа является исключительно важным в связи с понятием целостности баз данных.

2. Отсутствие упорядоченности кортежей

Свойство отсутствия упорядоченности кортежей отношения также является следствием определения отношения-экземпляра как множества кортежей. Отсутствие требования к поддержанию порядка на множестве кортежей отношения дает дополнительную гибкость СУБД при хранении баз данных во внешней памяти и при выполнении запросов к базе данных. Это не противоречит тому, что при формулировании запроса к БД, например, на языке SQL можно потребовать сортировки результирующей таблицы в соответствии со значениями некоторых столбцов. Такой результат, вообще говоря, не отношение, а некоторый упорядоченный список кортежей.

3. Отсутствие упорядоченности атрибутов

Атрибуты отношений не упорядочены, поскольку по определению схема отношения есть множество пар {имя атрибута, имя домена}. Для ссылки на значение атрибута в кортеже отношения всегда используется имя атрибута. Это свойство теоретически позволяет, например, модифицировать схемы существующих отношений не только путем добавления новых атрибутов, но и путем удаления существующих атрибутов. Однако в большинстве существующих систем такая возможность не допускается, и хотя упорядоченность набора атрибутов отношения явно не требуется, часто в качестве неявного порядка атрибутов используется их порядок в линейной форме определения схемы отношения.

4. Атомарность значений атрибутов .

Значения всех атрибутов являются атомарными. Это следует из определения домена как потенциального множества значений простого типа данных, т.е. среди значений домена не могут содержаться множества значений (отношения). Принято говорить, что в реляционных базах данных допускаются только нормализованные отношения или отношения, представленные в первой нормальной форме
Реляционная модель данных. Согласно Дейту реляционная модель состоит из трех частей, описывающих разные аспекты реляционного подхода: структурной части, манипуляционной части и целостной части. В структурной части модели фиксируется, что единственной структурой данных, используемой в реляционных БД, является нормализованное n-арное отношение. В манипуляционной части модели утверждаются два фундаментальных механизма манипулирования реляционными БД - реляционная алгебра и реляционное исчисление. Первый механизм базируется в основном на классической теории множеств (с некоторыми уточнениями), а второй - на классическом логическом аппарате исчисления предикатов первого порядка.

Целостность сущности и ссылок. Наконец, в целостной части реляционной модели данных фиксируются два базовых требования целостности, которые должны поддерживаться в любой реляционной СУБД. Первое требование называется требованием целостности сущностей . Объекту или сущности реального мира в реляционных БД соответствуют кортежи отношений. Конкретно требование состоит в том, что любой кортеж любого отношения отличим от любого другого кортежа этого отношения, т.е. другими словами, любое отношение должно обладать первичным ключом. Как мы видели в предыдущем разделе, это требование автоматически удовлетворяется, если в системе не нарушаются базовые свойства отношений. Второе требование называется требованием целостности по ссылкам и является несколько более сложным. Очевидно, что при соблюдении нормализованности отношений сложные сущности реального мира представляются в реляционной БД в виде нескольких кортежей нескольких отношений.

Реляционные операции и счисление.

Предложив реляционную модель данных, Э.Ф.Кодд создал и инструмент для удобной работы с отношениями – реляционную алгебру. Каждая операция этой алгебры использует одну или несколько таблиц (отношений) в качестве ее операндов и продуцирует в результате новую таблицу, т.е. позволяет "разрезать" или "склеивать" таблицы (рис. 3.3).

Рис. 3.3. Некоторые операции реляционной алгебры
Созданы языки манипулирования данными, позволяющие реализовать все операции реляционной алгебры и практически любые их сочетания. Среди них наиболее распространены SQL (Structured Query Language – структуризованный язык запросов) и QBE (Quere-By-Example – запросы по образцу) [ , ]. Оба относятся к языкам очень высокого уровня, с помощью которых пользователь указывает, какие данные необходимо получить, не уточняя процедуру их получения. С помощью единственного запроса на любом из этих языков можно соединить несколько таблиц во временную таблицу и вырезать из нее требуемые строки и столбцы (селекция и проекция).

Терминология и базовые понятия реляционных БД

Почти все программные продукты, созданные с конца 70-х г. основаны на реляционном подходе:

1. Данные представлены в двухмерных таблицах, организованных по определенным правилам.

2. Пользователю предоставляются операторы для работы с данными, с помощью которых генерируются новые таблицы на основе исходных – запросы.

Реляционные базы данных – единое хранилище данных, которое однозначно определяется, а затем используется многими пользователями. Изменение и добавление данных в БД не влияет на приложение.

Система управления базами данных – программный комплекс, с помощью которого пользователи могут определять и поддерживать БД, осуществлять контролируемый доступ.

Базовые понятия реляционных баз данных:

1. Понятие тип данных в реляционной модели данных полностью адекватно понятию типа данных в языках программирования. Обычно в современных реляционных БД допускается хранение символьных, числовых данных, битовых строк, специализированных числовых данных (таких, как "деньги"), а также специальных "темпоральных" данных (дата, время, временной интервал).

2. Реляционная модель основана на математическом понятии отношение , физическим представлением которого является таблица, то есть отношением можно назвать плоскую таблицу, состоящую из столбцов и строк.

3. Кортеж , соответствующий данной схеме отношения, - это множество пар {имя атрибута, значение}, которое содержит одно вхождение каждого имени атрибута, принадлежащего схеме отношения.

4. Атрибут – столбец таблицы, поле файла БД. Значения атрибутов в таблице-отношении могут иметь только один определенный вид функциональной зависимости друг от друга, а именно все значения в произвольном кортеже должны по отдельности зависеть только от значений столбца или группы столбцов - одних для всего отношения. Такой столбец или группа столбцов называются ключевыми, а значения атрибутов в них - ключами.

5. Домен – набор допустимых значений одного или нескольких атрибутов.

6. Степень отношения определяется количеством атрибутов, которое оно содержит. Отношение с одним атрибутом имеет степень 1 и называется унарным отношением. Отношение с двумя атрибутами называется бинарным, отношение с тремя атрибутами – тернарным, а для отношения с большим количеством атрибутов используется термин n-арное.

7. Кардинальность отношений – количество кортежей, которое содержится в отношении. Эта характеристика меняется при каждом удалении или добавлении кортежей.

8. Исходя из вышеизложенного, реляционная база данных состоит из отношений, структура которых определяется с помощью особых методов, называемых нормализацией.

9. В отношении не должно быть повторяющихся кортежей, в связи с этим вводится понятие реляционных ключей для уникальной идентификации каждого отдельного кортежа отношения по значениям одного или нескольких атрибутов.

10. Суперключ – атрибут или множество атрибутов, которое единственным образом идентифицирует кортеж данного отношения.

11. Потенциальный ключ – суперключ, который не содержит подмножества, также являющегося суперключем данного отношения. Потенциальный ключ К для данного отношения R обладает двумя свойствами:

· Уникальность. В каждом кортеже отношения R значение ключа К единственным образом идентифицирует этот кортеж.

· Неприводимость. Никакое допустимое подмножество ключа К не обладает свойством уникальности.

12. Первичный ключ – потенциальный ключ, который выбран для уникальной идентификации кортежей внутри отношения, остальные невыбранные ключи являются альтернативными. Если первичный ключ состоит из одного поля, он называется простым, если из нескольких полей - составным.

13. Вторичный (внешний) ключ(ВК) - это одно или несколько атрибутов внутри отношения, которые соответствуют потенциальному ключу некоторого отношения и выполняют роль поисковых или группировочных признаков. В отличие от первичного значение вторичного ключа может повторяться в нескольких записях файла, то есть он не является уникальным. Если по значению первичного ключа может быть найден один единственный экземпляр записи, то по вторичному - несколько.

14. Отношение - это множество кортежей, соответствующих одной схеме отношения.

15. Базовое отношение – отношение, кортежи которого физически хранятся в базе данных.

16. Представления – динамический результат одной или нескольких реляционных операций над базовыми отношениями с целью создания некоторого иного отношения. Представление является виртуальным отношением, которое реально в базе данных не существует, но создается по требованию отдельного пользователя в момент поступления этого требования. Представления позволяют достичь более высокой защищенности данных и предоставляют проектировщику средства настройки пользовательской модели.

17. Фундаментальные свойства отношений:

· Отношение имеет имя, которое отличается от имен всех других отношений в реляционной схеме.

· Каждая ячейка отношения содержит только одно элементарное (неделимое) значение.

· Каждый атрибут имеет уникальное имя.

· Значения атрибута берутся из одного и того же домена.

· Каждый кортеж является уникальным, т.е. дубликатов кортежей быть не может.

· Порядок следования атрибутов не имеет значения.

· Теоретически порядок следования кортежей в отношении не имеет значения. (Но практически этот порядок может существенно повлиять на эффективность доступа к ним.)

Согласно Дейту реляционная модель состоит из трех частей, описывающих разные аспекты реляционного подхода: структурной части, манипуляционной части и целостной части.

1. Структура модели основывается на нормализованных отношениях с учетом базовых понятий реляционной БД.

2. В манипуляционной части модели утверждаются два фундаментальных механизма манипулирования реляционными БД - реляционная алгебра и реляционное исчисление.

3. Целостность (от англ. integrity – нетронутость, неприкосновенность, сохранность, целостность) понимается как правильность данных в любой момент времени.

Этой статьей мы начинаем новый цикл, посвященный базам данных, современным технологиям доступа к данным и их обработки. На протяжении данного цикла мы планируем рассмотреть наиболее популярные настольные и серверные системы управления базами данных (СУБД), механизмы доступа к данным (OLD DB, ADO, BDE и др.) и утилиты для работы с базами данных (средства администрирования, генераторы отчетов, средства графического представления данных). Кроме того, мы планируем уделить внимание методам публикации данных в Internet, а также таким популярным способам обработки и хранения данных, как OLAP (On-Line Analytical Processing), и созданию хранилищ данных (Data Warehousing).

В данной статье мы рассмотрим основные понятия и принципы, лежащие в основе систем управления базами данных. Мы обсудим реляционную модель данных, понятие ссылочной целостности и принципы нормализации данных, а также средства проектирования данных. Затем мы расскажем, какими бывают СУБД, какие объекты могут содержаться в базах данных и каким образом осуществляются запросы к этим объектам.

Основные концепции реляционных баз данных

Начнем с основных понятий СУБД и краткого введения в теорию реляционных баз данных - наиболее популярного сейчас способа хранения данных.

Реляционная модель данных

Реляционная модель данных была предложена Е.Ф.Коддом (Dr. E.F.Codd), известным исследователем в области баз данных, в 1969 году, когда он был сотрудником фирмы IBM. Впервые основные концепции этой модели были опубликованы в 1970 г. «A Relational Model of Data for Large Shared Data Banks», CACM, 1970, 13 N 6).

Реляционная база данных представляет собой хранилище данных, содержащее набор двухмерных таблиц. Набор средств для управления подобным хранилищем называется реляционной системой управления базами данных (РСУБД) . РСУБД может содержать утилиты, приложения, сервисы, библиотеки, средства создания приложений и другие компоненты.

Любая таблица реляционной базы данных состоит из строк (называемых также записями ) и столбцов (называемых также полями ). В данном цикле мы будем использовать обе пары терминов.

Строки таблицы содержат сведения о представленных в ней фактах (или документах, или людях, одним словом, - об однотипных объектах). На пересечении столбца и строки находятся конкретные значения содержащихся в таблице данных.

Данные в таблицах удовлетворяют следующим принципам:

  1. Каждое значение, содержащееся на пересечении строки и колонки, должно быть атомарным (то есть не расчленяемым на несколько значений).
  2. Значения данных в одной и той же колонке должны принадлежать к одному и тому же типу, доступному для использования в данной СУБД.
  3. Каждая запись в таблице уникальна, то есть в таблице не существует двух записей с полностью совпадающим набором значений ее полей.
  4. Каждое поле имеет уникальное имя.
  5. Последовательность полей в таблице несущественна.
  6. Последовательность записей также несущественна.

Несмотря на то что строки таблиц считаются неупорядоченными, любая система управления базами данных позволяет сортировать строки и колонки в выборках из нее нужным пользователю способом.

Поскольку последовательность колонок в таблице несущественна, обращение к ним производится по имени, и эти имена для данной таблицы уникальны (но не обязаны быть уникальными для всей базы данных).

Итак, теперь мы знаем, что реляционные базы данных состоят из таблиц. Для иллюстрации некоторых теоретических положений и для создания примеров нам необходимо выбрать какую-нибудь базу данных. Чтобы не «изобретать колесо», мы воспользуемся базой данных NorthWind, входящей в комплект поставки Microsoft SQL Server и Microsoft Access.

Теперь давайте рассмотрим связи между таблицами.

Ключи и связи

Давайте взглянем на фрагмент таблицы Customers (клиенты) из базы данных NorthWind (мы удалили из нее поля, несущественные для иллюстрации связей между таблицами).

Поскольку строки в таблице неупорядочены, нам нужна колонка (или набор из нескольких колонок) для уникальной идентификации каждой строки. Такая колонка (или набор колонок) называется первичным ключом (primary key ). Первичный ключ любой таблицы обязан содержать уникальные непустые значения для каждой строки.

Если первичный ключ состоит из более чем одной колонки, он называется составным первичным ключом (composite primary key ).

Типичная база данных обычно состоит из нескольких связанных таблиц. Фрагмент таблицы Orders (заказы).

Поле CustomerID этой таблицы содержит идентификатор клиента, разместившего данный заказ. Если нам нужно узнать, как называется компания, разместившая заказ, мы должны поискать это же значение идентификатора клиента в поле CustomerID таблицы Customers и в найденной строке прочесть значение поля CompanyName. Иными словами, нам нужно связать две таблицы, Customers и Orders, по полю CustomerID. Колонка, указывающая на запись в другой таблице, связанную с данной записью, называется внешним ключом (foreign key ). Как видим, в случае таблицы Orders внешним ключом является колонка CustomerID (рис. 1).

Иными словами, внешний ключ - это колонка или набор колонок, чьи значения совпадают с имеющимися значениями первичного ключа другой таблицы.

Подобное взаимоотношение между таблицами называется связью (relationship ). Связь между двумя таблицами устанавливается путем присваивания значений внешнего ключа одной таблицы значениям первичного ключа другой.

Если каждый клиент в таблице Customers может разместить только один заказ, говорят, что эти две таблицы связаны соотношением один-к-одному (one-to-one relationship ). Если же каждый клиент в таблице Customers может разместить ноль, один или много заказов, говорят, что эти две таблицы связаны соотношением один-ко-многим (one-to-many relationship ) или соотношением master-detail . Подобные соотношения между таблицами используются наиболее часто. В этом случае таблица, содержащая внешний ключ, называется detail-таблицей , а таблица, содержащая первичный ключ, определяющий возможные значения внешнего ключа, называется master-таблицей .

Группа связанных таблиц называется схемой базы данных (database schema ). Информация о таблицах, их колонках (имена, тип данных, длина поля), первичных и внешних ключах, а также иных объектах базы данных, называется метаданными (metadata ).

Любые манипуляции с данными в базах данных, такие как выбор, вставка, удаление, обновление данных, изменение или выбор метаданных, называются запросом к базе данных (query ). Обычно запросы формулируются на каком-либо языке, который может быть как стандартным для разных СУБД, так и зависящим от конкретной СУБД.

Ссылочная целостность

Выше мы уже говорили о том, что первичный ключ любой таблицы должен содержать уникальные непустые значения для данной таблицы. Это утверждение является одним из правил ссылочной целостности (referential integrity ). Некоторые (но далеко не все) СУБД могут контролировать уникальность первичных ключей. Если СУБД контролирует уникальность первичных ключей, то при попытке присвоить первичному ключу значение, уже имеющееся в другой записи, СУБД сгенерирует диагностическое сообщение, обычно содержащее словосочетание primary key violation . Это сообщение в дальнейшем может быть передано в приложение, с помощью которого конечный пользователь манипулирует данными.

Если две таблицы связаны соотношением master-detail , внешний ключ detail- таблицы должен содержать только те значения, которые уже имеются среди значений первичного ключа master- таблицы. Если корректность значений внешних ключей не контролируется СУБД, можно говорить о нарушении ссылочной целостности. В этом случае, если мы удалим из таблицы Customers запись, имеющую хотя бы одну связанную с ней detail- запись в таблице Orders, это приведет к тому, что в таблице Orders окажутся записи о заказах, размещенных неизвестно кем. Если же СУБД контролирует корректность значений внешних ключей, то при попытке присвоить внешнему ключу значение, отсутствующее среди значений первичных ключей master-таблицы, либо при удалении или модификации записей master-таблицы, приводящих к нарушению ссылочной целостности, СУБД сгенерирует диагностическое сообщение, обычно содержащее словосочетание foreign key violation , которое в дальнейшем может быть передано в пользовательское приложение.

Большинство современных СУБД, например Microsoft Access 97, Microsoft Access 2000 и Microsoft SQL Server 7.0, способны контролировать соблюдение правил ссылочной целостности, если таковые описаны в базе данных. Для этой цели подобные СУБД используют различные объекты баз данных (мы обсудим их чуть позже). В этом случае все попытки нарушить правила ссылочной целостности будут подавляться с одновременной генерацией диагностических сообщений или исключений (database exceptions ).

Введение в нормализацию данных

Процесс проектирования данных представляет собой определение метаданных в соответствии с задачами информационной системы, в которой будет использоваться будущая база данных. Подробности о том, как производить анализ предметной области, создавать диаграммы «сущность-связь» (ERD - entity-relationship diagrams ) и модели данных, выходят за рамки данного цикла. Интересующиеся этими вопросами могут обратиться, например, к книге К.Дж.Дейта «Введение в системы баз данных» («Диалектика», Киев, 1998).

В данной статье мы обсудим лишь один из основных принципов проектирования данных - принцип нормализации .

Нормализация представляет собой процесс реорганизации данных путем ликвидации повторяющихся групп и иных противоречий в хранении данных с целью приведения таблиц к виду, позволяющему осуществлять непротиворечивое и корректное редактирование данных.

Теория нормализации основана на концепции нормальных форм. Говорят, что таблица находится в данной нормальной форме, если она удовлетворяет определенному набору требований. Теоретически существует пять нормальных форм, но на практике обычно используются только первые три. Более того, первые две нормальные формы являются по существу промежуточными шагами для приведения базы данных к третьей нормальной форме.

Первая нормальная форма

Проиллюстрируем процесс нормализации на примере, использующем данные из базы NorthWind. Предположим, что мы регистрируем все заказанные продукты в следующей таблице . Структура этой таблицы имеет вид (рис. 2).

Чтобы таблица соответствовала первой нормальной форме, все значения ее полей должны быть атомарными, и

все записи - уникальными. Поэтому любая реляционная таблица, в том числе и таблица OrderedProducts, по определению, уже находится в первой нормальной форме.

Тем не менее эта таблица содержит избыточные данные, например, одни и те же сведения о клиенте повторяются в записи о каждом заказанном продукте. Результатом избыточности данных являются аномалии модификации данных- проблемы, возникающие при добавлении, изменении или удалении записей. Например, при редактировании данных в таблице OrderedProducts могут возникнуть следующие проблемы:

  • Адрес конкретного клиента может содержаться в базе данных только тогда, когда клиент заказал хотя бы один продукт.
  • При удалении записи о заказанном продукте одновременно удаляются сведения о самом заказе и о клиенте, его разместившем.
  • Если, не дай бог, заказчик сменил адрес, придется обновить все записи о заказанных им продуктах.

Некоторые из этих проблем могут быть решены путем приведения базы данных ко второй нормальной форме .

Вторая нормальная форма

Говорят, что реляционная таблица находится во второй нормальной форме , если она находится в первой нормальной форме и ее неключевые поля полностью зависят от всего первичного ключа.

Таблица OrderedProducts находится в первой, но не во второй нормальной форме, так как поля CustomerID, Address и OrderDate зависят только от поля OrderID, являющегося частью составного первичного ключа (OrderID, ProductID).

Чтобы перейти от первой нормальной формы ко второй, нужно выполнить следующие шаги:

  1. Определить, на какие части можно разбить первичный ключ, так чтобы некоторые из неключевых полей зависели от одной из этих частей (эти части не обязаны состоять из одной колонки! ).
  2. Создать новую таблицу для каждой такой части ключа и группы зависящих от нее полей и переместить их в эту таблицу. Часть бывшего первичного ключа станет при этом первичным ключом новой таблицы.
  3. Удалить из исходной таблицы поля, перемещенные в другие таблицы, кроме тех их них, которые станут внешними ключами.

Например, для приведения таблицы OrderedProducts ко второй нормальной форме, нужно переместить поля CustomerID, Address и OrderDate в новую таблицу (назовем ее OrdersInfo), при этом поле OrderID станет первичным ключом новой таблицы (рис. 3).

В результате новые таблицы приобретут такой вид. Однако таблицы, находящиеся во второй, но не в третьей нормальной форме, по-прежнему содержат аномалии модификации данных. Вот каковы они, например, для таблицы OrdersInfo:

  • Адрес конкретного клиента по-прежнему может содержаться в базе данных только тогда, когда клиент заказал хотя бы один продукт.
  • Удаление записи о заказе в таблице OrdersInfo приведет к удалению записи о самом клиенте.
  • Если заказчик сменил адрес, придется обновить несколько записей (хотя, как правило, их меньше, чем в предыдущем случае).

Устранить эти аномалии можно путем перехода к третьей нормальной форме .

Третья нормальная форма

Говорят, что реляционная таблица находится в третьей нормальной форме , если она находится во второй нормальной форме и все ее неключевые поля зависят только от первичного ключа.

Таблица OrderDetails уже находится в третьей нормальной форме. Неключевое поле Quantity полностью зависит от составного первичного ключа (OrderID, ProductID). Однако таблица OrdersInfo в третьей нормальной форме не находится, так как содержит зависимость между неключевыми полями (она называется транзитивной зависимостью - transitivedependency ) - поле Address зависит от поля CustomerID.

Чтобы перейти от второй нормальной формы к третьей, нужно выполнить следующие шаги:

  • Определить все поля (или группы полей), от которых зависят другие поля.
  • Создать новую таблицу для каждого такого поля (или группы полей) и группы зависящих от него полей и переместить их в эту таблицу. Поле (или группа полей), от которого зависят все остальные перемещенные поля, станет при этом первичным ключом новой таблицы.
  • Удалить перемещенные поля из исходной таблицы, оставив лишь те из них, которые станут внешними ключами.

Для приведения таблицы OrdersInfo к третьей нормальной форме создадим новую таблицу Customers и переместим в нее поля CustomerID и Address. Поле Address из исходной таблицы удалим, а поле CustomerID оставим - теперь это внешний ключ (рис. 4).

Итак, после приведения исходной таблицы к третьей нормальной форме таблиц стало три - Customers, Orders и OrderDetails.

Преимущества нормализации

Нормализация устраняет избыточность данных, что позволяет снизить объем хранимых данных и избавиться от описанных выше аномалий их изменения. Например, после приведения рассмотренной выше базы данных к третьей нормальной форме налицо следующие улучшения:

  • Сведения об адресе клиента можно хранить в базе данных, даже если это только потенциальный клиент, еще не разместивший ни одного заказа.
  • Сведения о заказанном продукте можно удалять, не опасаясь удаления данных о клиенте и заказе.

Изменение адреса клиента или даты регистрации заказа теперь требует изменения только одной записи.

Как проектируют базы данных

Обычно современные СУБД содержат средства, позволяющие создавать таблицы и ключи. Существуют и утилиты, поставляемые отдельно от СУБД (и даже обслуживающие несколько различных СУБД одновременно), позволяющие создавать таблицы, ключи и связи.

Еще один способ создать таблицы, ключи и связи в базе данных - это написание так называемого DDL-сценария (DDL - Data Definition Language; о нем мы поговорим чуть позже).

Наконец, есть еще один способ, который становится все более и более популярным, - это использование специальных средств, называемых CASE-средствами (CASE означает Computer-Aided System Engineering). Существует несколько типов CASE-средств, но для создания баз данных чаще всего используются инструменты для создания диаграмм «сущность-связь» (entity-relationship diagrams, E/R diagrams). С помощью этих инструментов создается так называемая логическая модель данных, описывающая факты и объекты, подлежащие регистрации в ней (в таких моделях прототипы таблиц называются сущностями (entities), а поля - их атрибутами (attributes). После установления связей между сущностями, определения атрибутов и проведения нормализации, создается так называемая физическая модель данных для конкретной СУБД, в которой определяются все таблицы, поля и другие объекты базы данных. После этого можно сгенерировать либо саму базу данных, либо DDL-сценарий для ее создания.

Список наиболее популярных в настоящее время CASE-средств .

Таблицы и поля

Таблицы поддерживаются всеми реляционными СУБД, и в их полях могут храниться данные разных типов. Наиболее часто встречающиеся типы данных .

Индексы

Чуть выше мы говорили о роли первичных и внешних ключей. В большинстве реляционных СУБД ключи реализуются с помощью объектов, называемых индексами, которые можно определить как список номеров записей, указывающий, в каком порядке их предоставлять.

Мы уже знаем, что записи в реляционных таблицах неупорядочены. Тем не менее любая запись в конкретный момент времени имеет вполне определенное физическое местоположение в файле базы данных, хотя оно и может изменяться в процессе редактирования данных или в результате «внутренней деятельности» самой СУБД.

Предположим, в какой-то момент времени записи в таблице Customers хранились в таком порядке .

Допустим, нам нужно получить эти данные упорядоченными по полю CustomerID. Опустив технические детали, мы можем сказать, что индекс по этому полю - это последовательность номеров записей, в соответствии с которой их нужно выводить, то есть:

1,6,4,2,5,3

Если же мы хотим упорядочить записи по полю Address, последовательность номеров записей будет другой:

5,4,1,6,2,3

Хранение индексов требует существенно меньше места, чем хранение по-разному отсортированных версий самой таблицы.

Если нам нужно найти данные о клиентах, у которых CustomerID начинается с символов «BO», мы можем найти с помощью индекса местоположение этих записей (в данном случае 2 и 5 (очевидно, что в индексе номера этих записей идут подряд), а затем прочесть именно вторую и пятую записи, вместо того чтобы просматривать всю таблицу. Таким образом, использование индексов снижает время выборки данных.

Мы уже говорили о том, что физическое местоположение записей может изменяться в процессе редактирования данных пользователями, а также в результате манипуляций с файлами базы данных, проводимых самой СУБД (например, сжатие данных, сборка «мусора» и др.). Если при этом происходят соответствующие изменения и в индексе, он называется поддерживаемым и такие индексы используются в большинстве современных СУБД. Реализация таких индексов приводит к тому, что любое изменение данных в таблице влечет за собой изменение связанных с ней индексов, а это увеличивает время, требующееся СУБД для проведения таких операций. Поэтому при использовании таких СУБД следует создавать только те индексы, которые реально необходимы, и руководствоваться при этом тем, какие запросы будут встречаться наиболее часто.

Ограничения и правила

Большинство современных серверных СУБД содержат специальные объекты, называемые ограничениями (constraints), или правилами (rules). Эти объекты содержат сведения об ограничениях, накладываемых на возможные значения полей. Например, с помощью такого объекта можно установить максимальное или минимальное значение для данного поля, и после этого СУБД не позволит сохранить в базе данных запись, не удовлетворяющую данному условию.

Помимо ограничений, связанных с установкой диапазона изменения данных, существуют также ссылочные ограничения (referential constraints, например связь master-detail между таблицами Customers и Orders может быть реализована как ограничение, содержащее требование, чтобы значение поля CustomerId (внешний ключ) в таблице Orders было равно одному из уже имеющихся значений поля CustomerId таблицы Customers.

Отметим, что далеко не все СУБД поддерживают ограничения. В этом случае для реализации аналогичной функциональности правил можно либо использовать другие объекты (например, триггеры), либо хранить эти правила в клиентских приложениях, работающих с этой базой данных.

Представления

Практически все реляционные СУБД поддерживают представления (views). Этот объект представляет собой виртуальную таблицу, предоставляющую данные из одной или нескольких реальных таблиц. Реально он не содержит никаких данных, а только описывает их источник.

Нередко такие объекты создаются для хранения в базах данных сложных запросов. Фактически view - это хранимый запрос.

Создание представлений в большинстве современных СУБД осуществляется специальными визуальными средствами, позволяющими отображать на экране необходимые таблицы, устанавливать связи между ними, выбирать отображаемые поля, вводит ограничения на записи и др.

Нередко эти объекты используются для обеспечения безопасности данных, например, путем разрешения просмотра данных с их помощью без предоставления доступа непосредственно к таблицам. Помимо этого некоторые представления объекты могут возвращать разные данные в зависимости, например, от имени пользователя, что позволяет ему получать только интересующие его данные.

Триггеры и хранимые процедуры

Триггеры и хранимые процедуры, поддерживаемые в большинстве современных серверных СУБД, используются для хранения исполняемого кода.

Хранимая процедура - это специальный вид процедуры, который выполняется сервером баз данных. Хранимые процедуры пишутся на процедурном языке, который зависит от конкретной СУБД. Они могут вызывать друг друга, читать и изменять данные в таблицах, и их можно вызвать из клиентского приложения, работающего с базой данных.

Хранимые процедуры обычно используются при выполнении часто встречающихся задач (например, сведение бухгалтерского баланса). Они могут иметь аргументы, возвращать значения, коды ошибок и иногда наборы строк и колонок (такой набор данных иногда называется термином dataset). Однако последний тип процедур поддерживается не всеми СУБД.

Триггеры также содержат исполняемый код, но их, в отличие от процедур, нельзя вызвать из клиентского приложения или хранимой процедуры. Триггер всегда связан с конкретной таблицей и выполняется тогда, когда при редактировании этой таблицы наступает событие, с которым он связан (например, вставка, удаление или обновление записи).

В большинстве СУБД, поддерживающих триггеры, можно определить несколько триггеров, выполняющихся при наступлении одного и того же события, и определить порядок из выполнения.

Объекты для генерации первичных ключей

Очень часто первичные ключи генерируются самой СУБД. Это более удобно, чем их генерация в клиентском приложении, так как при многопользовательской работе генерация ключей с помощью СУБД - это единственный способ избежать дублирования ключей и получать их последовательные значения.

В разных СУБД для генерации ключей используются разные объекты. Некоторые из таких объектов хранят целое число и правила, по которым генерируется следующее за ним значение, -обычно это выполняется с помощью триггеров. Такие объекты поддерживаются, например, в Oracle (в этом случае они называются последовательностями - sequences) и в IB Database (в этом случае они называются генераторами - generators).

Некоторые СУБД поддерживают специальные типы полей для первичных ключей. При добавлении записей такие поля заполняются автоматически последовательными значениями (обычно целыми). В случае Microsoft Access и Microsoft SQL Server такие поля называются Identity fields, а в случае Corel Paradox - автоинкрементными полями (Autoincrement fields).

Пользователи и роли

Предотвращение несанкционированного доступа к данным является серьезной проблемой, которая решается разными способами. Самый простой - это парольная защита либо всей таблицы, либо некоторых ее полей (такой механизм поддерживается, например, в Corel Paradox).

В настоящее время более популярен другой способ защиты данных - создание списка пользователей (users) с именами (user names) и паролями (passwords). В этом случае любой объект базы данных принадлежит конкретному пользователю, и этот пользователь предоставляет другим пользователям разрешение на чтение или модификацию данных из этого объекта либо на модификацию самого объекта. Этот способ применяется во всех серверных и некоторых настольных СУБД (например, Microsoft Access).

Некоторые СУБД, в основном серверные, поддерживают не только список пользователей, но и роли (roles). Роль - это набор привилегий. Если конкретный пользователь получает одну или несколько ролей, а вместе с ними - и все привилегии, определенные для данной роли.

Запросы к базам данных

Модификация и выбор данных, изменение метаданных и некоторые другие операции осуществляются с помощью запросов (query). Большинство современных СУБД (и некоторые средства разработки приложений) содержат средства для генерации таких запросов.

Один из способов манипуляции данными называется «queries by example» (QBE) - запрос по образцу. QBE представляет собой средство для визуального связывания таблиц и выбора полей, которые следует отобразить в результате запроса.

В большинстве СУБД (за исключением некоторых настольных) визуальное построение запроса с помощью QBE приводит к генерации текста запроса с помощью специального языка запросов SQL (Structured Query Language). Можно также написать запрос непосредственно на языке SQL.

Курсоры

Нередко результатом запроса является набор из строк и столбцов (dataset). В отличие от реляционной таблицы в таком наборе строки упорядочены, и их порядок определяется исходным запросом (и иногда - наличием индексов). Поэтому мы можем определить текущую строку в таком наборе и указатель на нее, который называется курсором (cursor).

Большинство современных СУБД поддерживают так называемые двунаправленные курсоры (bi-directional cursors), позволяющие перемещаться по результирующему набору данных как вперед, так и назад. Однако некоторые СУБД поддерживают только однонаправленные курсоры, позволяющие перемещаться по набору данных только вперед.

Язык SQL

Structured Query Language (SQL) - это непроцедурный язык, используемый для формулировки запросов к базам данных в большинстве современных СУБД и в настоящий момент являющийся индустриальным стандартом.

Непроцедурность языка означает, что на нем можно указать, что нужно сделать с базой данных, но нельзя описать алгоритм этого процесса. Все алгоритмы обработки SQL-запросов генерируются самой СУБД и не зависят от пользователя. Язык SQL состоит из набора операторов, которые можно разделить на несколько категорий:

  • Data Definition Language (DDL) - язык определения данных, позволяющий создавать, удалять и изменять объекты в базах данных
  • Data Manipulation Language (DML) - язык управления данными, позволяющий модифицировать, добавлять и удалять данные в имеющихся объектах базы данных
  • Data Control Languages (DCL) - язык, используемый для управления пользовательскими привилегиями
  • Transaction Control Language (TCL) - язык для управления изменениями, сделанными группами операторов
  • Cursor Control Language (CCL) - операторы для определения курсора, подготовки операторов SQL к выполнению и некоторых других операций.

Более подробно о языке SQL вы расскажем в одной из следующих статей этого цикла.

Функции, определяемые пользователем

Некоторые СУБД позволяют использовать функции, определяемые пользователем (UDF-User-Defined Functions). Эти функции, как правило, хранятся во внешних библиотеках и должны быть зарегистрированы в базе данных, после чего их можно использовать в запросах, триггерах и хранимых процедурах.

Поскольку функции, определяемые пользователем, содержатся в библиотеках, их можно создавать с помощью любого средства разработки, позволяющего создавать библиотеки для платформы, на которой функционирует данная СУБД.

Транзакции

Транзакция (Transaction) - это группа операций над данными, которые либо выполняются все вместе, либо все вместе отменяются.

Завершение (Commit) транзакции означает, что все операции, входящие в состав транзакции, успешно завершены, и результат их работы сохранен в базе данных.

Откат (Rollback) транзакции означает, что все уже выполненные операции, входящие в состав транзакции, отменяются и все объекты базы данных, затронутые этими операциями, возвращены в исходное состояние. Для реализации возможности отката транзакций многие СУБД поддерживают запись в log-файлы, позволяющие восстановить исходные данные при откате.

Транзакция может состоять из нескольких вложенных транзакций.

Некоторые СУБД поддерживают двухфазное завершение транзакций (two-phase commit) - процесс, позволяющий осуществлять транзакции над несколькими базами данных, относящихся к одной и той же СУБД.

Для поддержки распределенных транзакций (то есть транзакций над базами данных, управляемых разными СУБД), существуют специальные средства, называемые мониторами транзакций (transaction monitors).

Заключение

В данной статье мы обсудили основные концепции построения реляционных СУБД, базовые принципы проектирования данных, а также рассказали о том, какие объекты могут быть созданы в базах данных.

В следующей статье мы познакомим наших читателей с наиболее популярными настольными СУБД: dBase, Paradox, Access, Visual FoxPro, Works и обсудим их основные возможности.

КомпьютерПресс 3"2000

Введение

Начавшийся XXI век специалисты называют веком компьютерных технологий. Человечество вступает в принципиально новую информационную эпоху. Меняются все слагаемые образа жизни людей. Уровень информации становится одной из характеристик уровня развития государства.

Многие развивающиеся страны осознали на должном уровне те преимущества, которые нет с собой распространение и развитие информационно-коммуникационных технологий. И не у кого не возникает сомнений тот факт, что движение к информационному обществу, это своего рода путь, который направлен в будущее человеческой цивилизации.

На основании реляционной модели база данных представляет собой определенную совокупность таблиц, над которыми выполняются операции, которые формулируются в терминах реляционной алгебры и реляционного исчисления.

В реляционной модели операции относительно объектов базы данных обладают теоретико-множественным характером являясь ядром любой базы данных. Модель представляет множество структурных данных, ограничений целостности и операций манипулирования данными.

Базовые понятия реляционной модели данных

Основными понятиями свойственными для реляционных данных считаются тип данных, домен, атрибут, кортеж, первичный ключ отношение. Первоначально отметим смысл этих понятия на примере отношения «СОТРУДНИКИ», содержащего информацию относительно сотрудников некоторой организации

Понятие тип данных соизмерим в реляционной модели данных с понятием типа данных в языках программирования. В современных реляционных базах данных имеет место хранение символьных числовых данных, битовых строк, а также специальных "темпоральных" данных, которые достаточно активно развиваются в процессе подхода к расширению возможностей реляционных систем.

Понятие домена обладает определенной спецификой для баз данных, хотя и обладают некоторой антологией с одтипами относительно некоторых языков программирования. Вообще домен определяется заданием некоторого базового типа, к которому имеет отношение элемент домена и произвольного логического выражения, нашедшего применение в элементе типа данных. В том случае, когда вычисление этого логического выражения представляет результат "истина", элемент является элементом домена.

Более правильной трактовкой понятия домена считается само понимание домена, как одного из допустимых потенциальных множеств значений данного типа.

Например, домен "Имена" в нашем случае на базовом типе срок символов он определен, но число его значений войдут только те сроки, которые способны изображать имя) такие сроки не могут начинаться с мягкого знака). Также необходимо отметить семантическую нагрузку понятия домена: только в том случае данные будут сравнимыми, когда будут иметь отношение к домену, но только одному

В нашем случае значения доменов "Номера пропусков" и "Номера групп", которые имеют отношение к типу целых числе, не может быть сравнимым. Отметим, что в некоторых случаях в реляционных СУБД само понятие «домена» не находит применение, т.к. уже поддерживается в Oracle V.7.

Схема отношения представляет собой именное множество пар: что включает: имя атрибута, тип, но только в том случае, когда понятие домена не поддерживается. Степень «артность» представляет собой схемы отношения - это определенная мощность это множества.

При этом отношения «Сотрудники» будет равна четырем и считаться 4-арным. А если все атрибуты одного отношения определены на относительно разных доменах, использовать осмысленно для именования атрибутов имена соответствующих доменов, не забывая при этом, о том, что это считается только лишь одним из удобных способом именования и не предоставляет возможность для устранения различий относительно понятия домена и атрибута. Схема базы данных - это определенный набор схем отношений.

Кортеж, который соответствует данной схеме отношения представляет собой множество пар, которое находит отражение в вхождении каждого имени атрибута, принадлежащего схеме отношения.

"Значение" считается допустимым значением домена данного атрибута, в том случае, когда понятие домена не поддерживается. В результате степень кортежа, т.е. число определенных элементов совпадает с степенью соответствующей схемы отношения

Кортеж - это набор именных значений заданного типа.

Отношение - это большое количество кортежей, которые соответствуют одной схеме отношения. В действительности, понятие схемы отношения ближе к понятию структурного типа данных в языках программирования было заголовком, а отношение как набор кортежей было телом отношения. Поэтому было бы логично разрешать определять схему отношения отдельно, а в последствии одно или несколько отношений данной схемой, но реляционных базах данных это не принято.

Имя схемы отношения относительно таких баз данных в большинстве случаев совпадает с именем соответствующего отношения-экземпляра. В классических реляционных базах данных после определенной схемы базы данных только отношения-экземпляры изменяются. Могут в них появляться новые и удаляться или изменяться существующие кортежи. Но в тоже время во многих реализациях находит место изменение схемы базы данных: определение новых и изменение уже существующих схем отношения, что принято называть эволюцией схемы базы данных.

Обычным представлением отношения считается таблица, заголовком которой считается схема отношения, а строками - кортежи отношения-экземпляра, в этом случае имена атрибутов именуют столбцами этой таблицы. В связи с этим иногда говорят " столбец таблицы", подразумевая " атрибут отношения". Как видно, основные структурные понятия реляционной модели данных (если не считать понятия домена) имеют очень простую интуитивную интерпретацию, хотя в теории реляционных БД все они определяются абсолютно формально и точно.

Появление компьютерной техники в нашей современности ознаменовало информационный переворот во всех сферах человеческой деятельности. Но для того, чтобы вся информация не стала ненужным мусором в глобальной сети Интернет, была изобретена система баз данных, в которой материалы сортируются, систематизируются, в результате чего их легко отыскать и представить последующей обработке. Существуют три основные разновидности - выделяют базы данных реляционные, иерархические, сетевые.

Фундаментальные модели

Возвращаясь к возникновению баз данных, стоит сказать, что этот процесс был достаточно сложным, он берет свое начало вместе с развитием программируемого оборудования обработки информации. Поэтому неудивительно, что количество их моделей на данный момент достигает более 50, но основными из них считаются иерархическая, реляционная и сетевая, которые и до сих пор широко применяются на практике. Что же они собой представляют?

Иерархическая имеет древовидную структуру и составляется из данных разных уровней, между которыми существуют связи. Сетевая модель БД представляет собой более сложный шаблон. Ее структура напоминает иерархическую, а схема расширенная и усовершенствованная. Разница между ними в том, что потомственные данные иерархической модели могут иметь связь только с одним предком, а у сетевой их может быть несколько. Структура реляционной базы данных гораздо сложнее. Поэтому ее следует разобрать более подробно.

Основное понятие реляционной базы данных

Такая модель была разработана в 1970-х годах доктором науки Эдгаром Коддом. Она представляет собой логически структурированную таблицу с полями, описывающую данные, их отношения между собой, операции, произведенные над ними, а главное - правила, которые гарантируют их целостность. Почему модель называется реляционной? В ее основе лежат отношения (от лат. relatio) между данными. Существует множество определений этого типа базы данных. Реляционные таблицы с информацией гораздо проще систематизировать и придать обработке, нежели в сетевой или иерархической модели. Как же это сделать? Достаточно знать особенности, структуру модели и свойства реляционных таблиц.

Процесс моделирования и составления основных элементов

Для того чтобы создать собственную СУБД, следует воспользоваться одним из инструментов моделирования, продумать, с какой информацией вам необходимо работать, спроектировать таблицы и реляционные одно- и множественные связи между данными, заполнить ячейки сущностей и установить первичный, внешние ключи.

Моделирование таблиц и проектирование реляционных баз данных производится посредством бесплатных инструментов, таких как Workbench, PhpMyAdmin, Case Studio, dbForge Studio. После детальной проектировки следует сохранить графически готовую реляционную модель и перевести ее в готовый SQL-код. На этом этапе можно начинать работу с сортировкой данных, их обработку и систематизацию.

Особенности, структура и термины, связанные с реляционной моделью

Каждый источник по-своему описывает ее элементы, поэтому для меньшей путаницы хотелось бы привести небольшую подсказку:

  • реляционная табличка = сущность;
  • макет = атрибуты = наименование полей = заголовок столбцов сущности;
  • экземпляр сущности = кортеж = запись = строка таблички;
  • значение атрибута = ячейка сущности= поле.

Для перехода к свойствам реляционной базы данных следует знать, из каких базовых компонентов она состоит и для чего они предназначены.

  1. Сущность. Таблица реляционной базы данных может быть одна, а может быть целый набор из таблиц, которые характеризируют описанные объекты благодаря хранящимся в них данным. У них фиксированное количество полей и переменное число записей. Таблица реляционной модели баз данных составляется из строк, атрибутов и макета.
  2. Запись - переменное число строк, отображающих данные, что характеризируют описываемый объект. Нумерация записей производится системой автоматически.
  3. Атрибуты - данные, демонстрирующие собой описание столбцов сущности.
  4. Поле. Представляет собой столбец сущности. Их количество - фиксированная величина, устанавливаемая во время создания или изменения таблицы.

Теперь, зная составляющие элементы таблицы, можно переходить к свойствам реляционной модели database:

  • Сущности реляционной БД двумерные. Благодаря этому свойству с ними легко проделывать различные логические и математические операции.
  • Порядок следования значений атрибутов и записей в реляционной таблице может быть произвольным.
  • Столбец в пределах одной реляционной таблицы должен иметь свое индивидуальное название.
  • Все данные в столбце сущности имеют фиксированную длину и одинаковый тип.
  • Любая запись в сущности считается одним элементом данных.
  • Составляющие компоненты строк единственны в своем роде. В реляционной сущности отсутствуют одинаковые строки.

Исходя из свойств понятно, что значения атрибутов должны быть одинакового типа, длины. Рассмотрим особенности значений атрибутов.

Основные характеристики полей реляционных БД

Названия полей должны быть уникальными в рамках одной сущности. Типы атрибутов или полей реляционных баз данных описывают, данные какой категории хранятся в полях сущностей. Поле реляционной базы данных должно иметь фиксированный размер, исчисляемый в символах. Параметры и формат значений атрибутов определяют манеру исправления в них данных. Еще есть такое понятие, как "маска", или "шаблон ввода". Оно предназначено для определения конфигурации ввода данных в значение атрибута. Непременно при записи неправильного в поле должно выдаваться извещение об ошибке. Также на элементы полей накладываются некоторые ограничения - условия проверки точности и безошибочности ввода данных. Существует некоторое обязательное значение атрибута, которое однозначно должно быть заполнено данными. Некоторые строки атрибутов могут быть заполнены NULL-значениями. Разрешается ввод пустых данных в атрибуты полей. Как и извещение об ошибке, есть значения, которые заполняются системой автоматически - это данные по умолчанию. Для ускорения поиска любых данных предназначено индексированное поле.

Схема двумерной реляционной таблицы базы данных

Для детального понимания модели с помощью SQL лучше всего рассмотреть схему на примере. Нам уже известно, что представляет собой реляционная БД. Запись в каждой таблице - это один элемент данных. Чтобы предотвратить избыточность данных, необходимо провести операции нормализации.

Базовые правила нормализации реляционной сущности

1. Значение названия поля для реляционной таблицы должно быть уникальным, единственным в своем роде (первая нормальная форма - 1НФ).

2. Для таблицы, которая уже приведена к 1НФ, наименование любого неидентифицирующего столбца должно быть зависимым от уникального идентификатора таблицы (2НФ).

3. Для всей таблицы, что уже находится в 2НФ, каждое неидентифицирующее поле не может зависеть от элемента другого неопознанного значения (3НФ сущности).

Базы данных: реляционные связи между таблицами

Существует 2 основных реляционных табличек:

  • «Один-многие». Возникает при соответствии одной ключевой записи таблицы №1 нескольким экземплярам второй сущности. Значок ключа на одном из концов проведенной линии говорит о том, что сущность находится на стороне «один», второй конец линии зачастую отмечают символом бесконечности.

  • Связь «много-много» образуется в случае возникновения между несколькими строками одной сущности явного логичного взаимодействия с рядом записей другой таблицы.
  • Если между двумя сущностями возникает конкатенация «один к одному», это значит, что ключевой идентификатор одной таблицы присутствует в другой сущности, тогда следует убрать одну из таблиц, она лишняя. Но иногда исключительно в целях безопасности программисты преднамеренно разделяют две сущности. Поэтому гипотетически связь «один к одному» может существовать.

Существование ключей в реляционной базе данных

Первичный и вторичный ключи определяют потенциальные отношения базы данных. Реляционные связи модели данных могут иметь только один потенциальный ключ, это и будет primary key. Что же он собой представляет? Первичный ключ - это столбец сущности или набор атрибутов, благодаря которому можно получить доступ к данным конкретной строки. Он должен быть уникальным, единственным, а его поля не могут содержать пустых значений. Если первичный ключ состоит всего из одного атрибута, тогда он называется простым, в ином случае будет составляющим.

Кроме первичного ключа, существует и внешний (foreign key). Многие не понимают, какая между ними разница. Разберем их более детально на примере. Итак, существует 2 таблицы: «Деканат» и «Студенты». Сущность «Деканат» содержит поля: «ID студента», «ФИО» и «Группа». Таблица «Студенты» имеет такие значения атрибутов, как «ФИО», «Группа» и «Средний бал». Так как ID студента не может быть одинаковым для нескольких студентов, это поле и будет первичным ключом. «ФИО» и «Группа» из таблицы «Студенты» могут быть одинаковыми для нескольких человек, они ссылаются на ID номер студента из сущности «Деканат», поэтому могут быть использованы в качестве внешнего ключа.

Пример модели реляционной базы данных

Для наглядности приведем простой пример реляционной модели базы данных, состоящей из двух сущностей. Существует таблица с названием «Деканат».

Необходимо провести связи, чтобы получилась полноценная реляционная база данных. Запись "ИН-41", как и "ИН-72", может присутствовать не единожды в табличке "Деканат", также фамилия, имя и отчество студентов в редких случаях могут совпадать, поэтому данные поля никак нельзя сделать первичным ключом. Покажем сущность «Студенты».

Как мы видим, типы полей реляционных баз данных совершенно различаются. Присутствуют как цифровые записи, так и символьные. Поэтому в настройках атрибутов следует указывать значения integer, char, vachar, date и другие. В таблице "Деканат" уникальным значением является только ID студента. Данное поле можно взять за первичный ключ. ФИО, группа и телефон из сущности "Студенты" могут быть взяты как внешний ключ, ссылающийся на ID студента. Связь установлена. Это пример модели со связью «один к одному». Гипотетически одна из таблиц лишняя, их можно легко объединить в одну сущность. Чтобы ID-номера студентов не стали всеобще известными, вполне реально существование двух таблиц.